< CZ:Featured articleRevision as of 08:28, 23 March 2012 by imported>Chunbum Park
by Paul Wormer
In mathematics and physics, an associated Legendre function Pℓm is related to a Legendre polynomial Pℓ by the following equation
Although extensions are possible, in this article ℓ and m are restricted to integer numbers. For even m the associated Legendre function is a polynomial, for odd m the function contains the factor (1−x ² )½ and hence is not a polynomial.
The associated Legendre functions are important in quantum mechanics and potential theory.
According to Ferrers[1] the polynomials were named "Associated Legendre functions" by the British mathematician Isaac Todhunter in 1875,[2] where "associated function" is Todhunter's translation of the German term zugeordnete Function, coined in 1861 by Heine,[3] and "Legendre" is in honor of the French mathematician Adrien-Marie Legendre (1752–1833), who was the first to introduce and study the functions.
Differential equation
Define
where Pℓ(x) is a Legendre polynomial.
Differentiating the Legendre differential equation:
m times gives an equation for Πml
After substitution of
and after multiplying through with , we find the associated Legendre differential equation:
One often finds the equation written in the following equivalent way
where the primes indicate differentiation with respect to x.
In physical applications it is usually the case that x = cosθ, then the associated Legendre differential equation takes the form
.... (read more)
notes
|
- ↑ N. M. Ferrers, An Elementary Treatise on Spherical Harmonics, MacMillan, 1877 (London), p. 77. Online.
- ↑ I. Todhunter, An Elementary Treatise on Laplace's, Lamé's, and Bessel's Functions, MacMillan, 1875 (London). In fact, Todhunter called the Legendre polynomials "Legendre coefficients".
- ↑ E. Heine, Handbuch der Kugelfunctionen, G. Reimer, 1861 (Berlin).Google book online
|