< Talk:Associated Legendre functionRevision as of 09:13, 12 July 2009 by imported>Paul Wormer
I added a proof of orthogonality and a derivation of the normalization constant for the first equation in the Orthogonality relations section in on the main page. Dan Nessett 16:42, 11 July 2009 (UTC)
1. The proof starts out by implicitly proving the anti-Hermiticity of
Indeed, let w(x) be a function with w(1) = w(−1) = 0, then
Hence
The latter result is used in the proof given in the Addendum.
2. When as an intermediate the ordinary Legendre polynomials Pl are introduced, we may use a result from the theory of orthogonal polynomials. Namely, a Legendre polynomial of order l is orthogonal to any polynomial of lower order. We meet (k ≤ l)
then
The bra is a polynomial of order k, and since k ≤ l, the bracket is non-zero only if k = l.
Then, knowing this, the hard work (given in the Addendum) of computing the normalization constant remains.