SlogFitFixedPoint04.jpg/code
Jump to navigation
Jump to search
// is generated using LaTex, C++ and the table of coefficients. // The table of coefficients can be generated with Maple (software) or Mathematica (software). // /* begin of the Mathematica code that generates the coefficients
Lof[z]=Log[(Exp[z]-1)/z] M=7; r[z_]=Sum[v[n]z^n,{n,1,M+2}] F=Series[r[z]-r[(Exp[z]-1)L]-Lof[z],{z,0,M+2}] CL=CoefficientList[F,z] For[n=1,n<M,r[n]=ReplaceAll[v[n], Extract[Solve[Extract[CL,n+1]\[Equal]0,v[n]],1]];n++] For[n=1,n<M,Print["v[",n,"]=",r[n]];n++] Solve[z == Log[z], z] nL = -Conjugate[N[ProductLog[-1], 20]] Log[nL]-nL For[n=1, n<M, v[n]=r[n]; Print["r[",n,"]=",N[ReplaceAll[r[n],L->nL],20]]; n++]
(* end of Mathematica code *) */
// If you have no Mathematica installed, but you want ro reproduce the coefficients, use Maple instead: /* Begin of the Maspe codes that generates the same coefficients fog := z -> log((exp(z)-1)/z) M := 6 Digits := 41 slo := z-> sum(v[n]*z^n, n = 1 .. M) F := series(slo(z)-slo((exp(z)-1)*L)-fog(z), z, M) Le := solve(log(x) = x, x) L := conjugate(evalf(Le, 40)) for m to M-1 do v[m] := solve(coeff(F, z^m) = 0, v[m]) end do End of the Maple code */
/* Begin of the C++ code */
/* End of the C++ code */ // Copyleft 2008 by Dmitrii Kouznetsov