Criticality (nuclear)

From Citizendium
Revision as of 11:40, 26 November 2012 by imported>Henry A. Padleckas (I plan to rewrite the content I just removed. I do not have time now to do it.)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In nuclear physics and engineering, criticality refers to the condition of a place where there is fissile material, specifying whether a nuclear fission chain reaction there can be sustained. The place can be an atomic (nuclear) bomb, the core of a nuclear reactor, or some other place where fissile material is stored or processed.

For a nuclear chain reaction to be sustained, there must be a minimum critical mass of fissile material. Furthermore, the criticality depends on the geometry of the material. When a critical mass of fissile material is sufficiently compacted, it reaches a critical or supercritical condition and a chain reaction starts up. This causes a multitude of neutrons to be released and creates nuclear fission products, which emit a high level of radiation, which can be harmful or fatal to people nearby. Therefore, unintended criticality is to be avoided. Such a criticality accident can occur if too much uranium or plutonium is brought together in one place. Nuclear reactors have copious radiation shielding and are in a reactor containment to avoid exposing personnel to radiation.