Revision as of 11:03, 30 January 2009 by imported>Paul Wormer
First four harmonic oscillator functions ψ
n. Potential
V(
x) is shown as reference. Function values are shifted upward by the corresponding energy values
![{\displaystyle (n+{\tfrac {1}{2}})\hbar \omega .}](https://wikimedia.org/api/rest_v1/media/math/render/svg/865e219bbc7328d8b59d22ee5622e5695590c38c)
In quantum mechanics, the one-dimensional harmonic oscillator is one of the few systems that can be treated exactly. Its time-independent Schrödinger equation has the form
![{\displaystyle \left[-{\frac {\hbar ^{2}}{2m}}{\frac {\mathrm {d} ^{2}}{\mathrm {d} x^{2}}}+{\frac {1}{2}}kx^{2}\right]\psi =E\psi }](https://wikimedia.org/api/rest_v1/media/math/render/svg/3d9f0668b35308e56ecebd650d35557a417587e9)
The two terms between square brackets are the Hamiltonian (energy operator) of the system: the first term is the kinetic energy operator and the second the potential energy operator.
The quantity
is Planck's reduced constant, m is the mass of the oscillator, and k is Hooke's spring constant. See the classical harmonic oscillator for further explanation of m and k.
The solutions of the Schrödinger equation are characterized by a vibration quantum number n = 0,1,2, .. and are of the form
![{\displaystyle \psi _{n}(x)=\left({\frac {\beta ^{2}}{\pi }}\right)^{1/4}\;{\frac {1}{\sqrt {2^{n}\,n!}}}\;e^{-(\beta x)^{2}/2}\;H_{n}(\beta x)\quad {\hbox{with}}\quad E_{n}=(n+{\tfrac {1}{2}})\hbar \omega .}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3f4d3aed74095cc2bff534a5d9c3ee0b69ff609c)
Here
![{\displaystyle \beta \equiv {\sqrt {\frac {m\omega }{\hbar }}}\quad {\hbox{and}}\quad \omega \equiv {\sqrt {\frac {k}{m}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d9c07b0c03546836b79301c592d50df34780311d)
The functions Hn(x) are Hermite polynomials; the first few are:
![{\displaystyle H_{0}(x)=1,\quad H_{1}(x)=2x,\quad H_{2}(x)=4x^{2}-2,\quad H_{3}(x)=8x^{3}-12x,\quad H_{4}(x)=16x^{4}-48x^{2}+12.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d07975b8e2abf4711752489cc678b468fd8bc7c2)
The graphs of the first four eigenfunctions are shown in the figure. Note that the functions of even n are even, that is,
, while those of odd n are antisymmetric
Solution of the Schrödinger equation
We rewrite the Schrödinger equation so as to hide the physical constants m, k, and h. As a first step we define the angular frequency ω ≡ √k/m, the same formula as for the classical harmonic oscillator:
![{\displaystyle {\frac {1}{2}}\left[-{\frac {\hbar ^{2}}{m}}{\frac {\mathrm {d} ^{2}}{\mathrm {d} x^{2}}}+m\omega ^{2}x^{2}\right]\psi =E\psi .}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fa364b4f4b0b31d74933d03ba31283324a200e95)
Secondly, we divide through by
, a factor that has dimension energy,
![{\displaystyle {\frac {1}{2}}\left[-{\frac {\hbar }{m\omega }}{\frac {\mathrm {d} ^{2}}{\mathrm {d} x^{2}}}+{\frac {m\omega }{\hbar }}x^{2}\right]\psi ={\frac {E}{\hbar \omega }}\psi .}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2c52ece1d81ae4551f61d09b90fc3a758743f8ec)
Write
![{\displaystyle \beta \equiv {\sqrt {\frac {m\omega }{\hbar }}},\quad y\equiv \beta x,\quad {\mathcal {E}}\equiv {\frac {E}{\hbar \omega }}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b8b270bf5096c57da17708fdf73cd1f5c4ea8c35)
and the Schrödinger equation becomes
![{\displaystyle {\frac {1}{2}}\left[-{\frac {1}{\beta ^{2}}}{\frac {\mathrm {d} ^{2}}{\mathrm {d} x^{2}}}+\beta ^{2}x^{2}\right]\psi ={\mathcal {E}}\psi \quad \Longrightarrow \quad {\frac {1}{2}}\left[-{\frac {\mathrm {d} ^{2}}{\mathrm {d} y^{2}}}+y^{2}\right]\psi ={\mathcal {E}}\psi .}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2d1d15092a4e7bb074de00b75c4b9275b33c4e54)
Note that all constants are out of sight in the equation on the right.
A particular solution of this equation is
![{\displaystyle \psi _{0}(y)=e^{-y^{2}/2}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8e824b90f6ab8ce1965262d89f2c84c94b9c75f8)
We verify this
![{\displaystyle -{\frac {\mathrm {d} e^{-y^{2}/2}}{\mathrm {d} y}}=ye^{-y^{2}/2}\quad {\hbox{and}}\quad {\frac {\mathrm {d} (ye^{-y^{2}/2})}{\mathrm {d} y}}=e^{-y^{2}/2}\left(1-y^{2}\right),}](https://wikimedia.org/api/rest_v1/media/math/render/svg/24f8810ecf46bee479b69a220cdbafaa27bf451b)
so that
![{\displaystyle {\frac {1}{2}}\left[-{\frac {\mathrm {d} ^{2}}{\mathrm {d} y^{2}}}+y^{2}\right]e^{-y^{2}/2}={\frac {1}{2}}\left[e^{-y^{2}/2}\left(1-y^{2}\right)+y^{2}e^{-y^{2}/2}\right]={\frac {1}{2}}e^{-y^{2}/2}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/93a7d91461e3cd6e73134967273d97d75c50c217)
We conclude that ψ0(y) ≡ exp(-y2/2) is an eigenfunction with eigenvalue
![{\displaystyle {\mathcal {E}}={\frac {1}{2}}\quad \Longrightarrow \quad E_{0}={\tfrac {1}{2}}\hbar \omega .}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8f624bcebbe1fda6ebc586102a721aa42081ab92)
This encourages us to try a function of the form
![{\displaystyle \psi (y)=e^{-y^{2}/2}f(y)=\psi _{0}(y)f(y).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/93e4a3cd485b7090630018a1a429b2e4e189f519)
Use the Leibniz formula
![{\displaystyle {\frac {d^{2}(\psi _{0}f)}{dy^{2}}}={\frac {d^{2}\psi _{0}}{dy^{2}}}f+2{\frac {d\psi _{0}}{dy}}{\frac {df}{dy}}+{\frac {d^{2}f}{dy^{2}}}\psi _{0}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2f59155f5250b0f5cf7d00c7b1f4d59f8791be77)
and
![{\displaystyle {\frac {1}{2}}\left[-{\frac {d^{2}\psi _{0}}{dy^{2}}}+y^{2}\psi _{0}\right]f={\frac {1}{2}}\psi _{0}f\quad {\hbox{and}}\quad {\frac {d\psi _{0}}{dy}}=-y\psi _{0}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/cf2e580c99c1105a568c3c229230f09a3d3960c9)
then we see
![{\displaystyle {\frac {1}{2}}\left[-{\frac {d^{2}(\psi _{0}f)}{dy^{2}}}+y^{2}\psi _{0}f\right]={\frac {1}{2}}\psi _{0}f+y\psi _{0}{\frac {df}{dy}}-{\frac {1}{2}}{\frac {d^{2}f}{dy^{2}}}\psi _{0}={\mathcal {E}}\psi _{0}f.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5b28e76d23647ec69af861bee1b0a4c6d132f231)
Divide through by −ψ0(y)/2 and we find the equation for f
![{\displaystyle {\frac {d^{2}f}{dy^{2}}}-2y{\frac {df}{dy}}-f=-2{\mathcal {E}}f.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/83e26931e767b578d29fdd8a6d099a87f6006a62)
The differential equation of Hermite with polynomial solutions Hn(y) is
![{\displaystyle {\frac {d^{2}H_{n}}{dy^{2}}}-2y\,{\frac {dH_{n}}{dy}}+2nH_{n}=0.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9a7f065dd3629ff8af7ece599108dbb9259eec22)
Due to the appearance of the integer coefficient 2n in the last term the solutions are polynomials. We see that if we put
![{\displaystyle 2{\mathcal {E}}-1=2n\quad \Longrightarrow \quad {\mathcal {E}}=n+{\tfrac {1}{2}}\quad \Longrightarrow \quad E=\hbar \omega (n+{\tfrac {1}{2}})}](https://wikimedia.org/api/rest_v1/media/math/render/svg/03dd6be296e7a17e34d678f2bd747b07260b2a58)
that we have solved the Schrödinger equation for the harmonic oscillator. The unnormalized solutions are
![{\displaystyle \psi (y)=e^{-y^{2}/2}\;H_{n}(y),\quad n=0,1,2,\ldots }](https://wikimedia.org/api/rest_v1/media/math/render/svg/3ddfab1ffce19e744cefea9da7339b253ce65df1)