Exponential function
Exponential function or exp, can be defined as solution of differential equation
with the additional condition
The study of the exponential function began with Leonhard Euler around 1730[1] Since that time, it has had widely applications in technology and science; in particular, exponential growth is described with such functions.
Properties
The exponential is an entire function.
For any complex and , the basic property holds:
The definition allows to calculate all the derivatives at zero; so, the Taylor expansion has the form
where means the set of complex numbers. The series converges for any complex . In particular, the series converges for any real value of the argument.
Inverse function
The inverse function of the exponential is the logarithm; for any complex , the relation holds:
Exponential also can be considered as inverse of logarithm, while the imaginary part of the argument is smaller than :
When the logarithm has a cut along the negative part of the real axis, exp can be considered.
Number e
is widely used in applications; this notation is commonly accepted. Its approximate value is
- Failed to parse (syntax error): {\displaystyle {\rm e}=\exp(1) \approx 2.71828 18284 59045 23536}
Relation with sin and cos functions
The exponential is related to the trigonometric functions sine and cosine by de Moivre's formula:
Generalization of exponential
The notation is used for the exponential with scaled argument;
Notation is used for the iterated exponential:
For non-integer values of , the iterated exponential can be defined as
where is function satisfying conditions
The inverse function is defined with condition
and, within some range of values of
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F^{-1}\Big (F(z)\Big)=z}
If in the notation Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \exp_b^c} the superscript is omitted, it is assumed to be unity; for example Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \exp_b^1=\exp_b} . If the suberscript is omitted, it is assumed to be Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathrm{e}} , id est, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \exp^c=\exp_\mathrm{e}^c}
At non-integer values of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c} , the fixed points of logarithm Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L\approx 0.31813150520476413 \pm 1.3372357014306895~ \mathrm{i}} are branch points of function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \exp^c} ; in figure, the cut is placed parallel to the real axis. At Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c<0} there is an additional cut which goes along the negative part of the real axis. In the figure, these cuts are marked with pink.
References
- ↑ William Dunham, Euler, the Master of us all, MAA (1999) ISBN 0-8835-328-0. Pp.17-37.
- Ahlfors, Lars V. (1953). Complex analysis. McGraw-Hill Book Company, Inc..
- H.Kneser. ``Reelle analytische Losungen der Gleichung Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varphi(\varphi(x))=\mathrm{e}^{x}} und verwandter Funktionalgleichungen. Journal fur die reine und angewandte Mathematik, 187 (1950), 56-67.