Revision as of 09:39, 23 November 2009 by imported>Peter Schmitt
Percentiles are statistical parameters which describe the distribution
of a (real) value in a population (or a sample).
Roughly speaking, the k-th percentile separates the smallest p percent
of values from the largest (100-p) percent.
Special percentiles are the median (50th percentile),
the quartiles (25th and 75th percentile),
and the deciles (the k-th decile is the (10k)-th percentile).
Percentiles are special cases of quantiles:
The k-th percentile is the same as the (k/100)-quantile.
Definition
The value x is k-th percentile if
![{\displaystyle P(\omega \leq x)\geq {k \over 100}{\textrm {\ \ and\ \ }}P(\omega \geq x)\leq 1-{k \over 100}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ff07032c4b440b9fb4e6af06a0969add801bdbaa)
Special cases
For a continuous distribution (like the normal distribution) the
k-th percentile x is uniquely determined by
![{\displaystyle P(\omega \leq x)={k \over 100}{\textrm {\ \ and\ \ }}P(\omega \geq x)=1-{k \over 100}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/eae1965b85d0dd63bd1147ea9542adb989791fe5)
In the general case (e.g., for discrete distributions, or for finite samples)
it may happen that the separating value has positive probability:
![{\displaystyle P(\omega =x)>0\Rightarrow P(\omega \leq x)>{k \over 100}{\textrm {\ \ and\ \ }}P(\omega \geq x)>1-{k \over 100}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0a3753efa1369d82d147a73a2faac488bb8db1d9)
or that there are two distinct values for which equality holds
such that
![{\displaystyle P(\omega \leq x_{1})={k \over 100}{\textrm {\ \ and\ \ }}P(\omega \geq x_{2})=1-{k \over 100}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9c67b04a50876cba9a50a77a81dfdf7f6bdaedb6)
Then every value in the (closed) intervall between the smallest and the largest such value
![{\displaystyle \left[\min \left\{x{\Bigl \vert }P(\omega \leq x)={k \over 100}\right\},\max \left\{x{\Bigl \vert }P(\omega \geq x)=1-{k \over 100}\right\}\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2d78530dc03f68ea8ef98569e8a9dfd922fb742c)
is a k-th percentiles.
Example
The following examples illustrates this:
Take a sample of 101 values, ordered according to their size:
![{\displaystyle x_{1}\leq x_{2}\leq \dots \leq x_{100}\leq x_{101}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e79d4836f778c514c40f6c5da78682c4743690dc)
Then the unique k-th percentile is
.
If there are only 100 values
![{\displaystyle x_{1}\leq x_{2}\leq \dots \leq x_{99}\leq x_{100}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/cc938367c6f51612d93e56bd538258c5ef6d70be)
then any value between
and
is a k-th percentile.