Complement (set theory)

From Citizendium
Revision as of 12:24, 28 November 2008 by imported>Richard Pinch (subpages)
Jump to navigation Jump to search
This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In set theory, the complement of a subset of a given set is the "remainder" of the larger set.

Formally, if A is a subset of X then the (relative) complement of A in X is

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X \setminus A = \{ x \in X : x \not\in A \} . \, }

In some version of set theory it is common to postulate a "universal set" and restrict attention only to sets which are contained in this universe. We may then define the (absolute) complement

The relation of complementation to the other set-theoretic functions is given by De Morgan's laws: