Water/Freezing point: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>David Yamakuchi
(I had a hard time getting refs to transclude thru templates. Perhaps Milton's simple table transclusion will work better...)
imported>Johan Förberg
(Kelvin is not a 'degree', says SI)
Line 6: Line 6:




Note: The freezing point of "pure" water is not measurable, whereas the melting point is. This is because pure water does not freeze without help of a solid crystallization kernel.<ref>http://www.newton.dep.anl.gov/askasci/gen01/gen01672.htm</ref> Very cold (metastable) ''pure liquid water'' can be obtained by "[[supercooling]]" pure water.  Pure liquid water has been reported to be possible down to various extremely low temperatures: (-38°C to -45°C<ref>http://polymer.bu.edu/hes/articles/ms98.pdf</ref>) and (231°K=-43.9°C<ref>http://polymer.bu.edu/hes/articles/ds03.pdf</ref>).
Note: The freezing point of "pure" water is not measurable, whereas the melting point is. This is because pure water does not freeze without help of a solid crystallization kernel.<ref>http://www.newton.dep.anl.gov/askasci/gen01/gen01672.htm</ref> Very cold (metastable) ''pure liquid water'' can be obtained by "[[supercooling]]" pure water.  Pure liquid water has been reported to be possible down to various extremely low temperatures: (-38°C to -45°C<ref>http://polymer.bu.edu/hes/articles/ms98.pdf</ref>) and (231 K=-43.9°C<ref>http://polymer.bu.edu/hes/articles/ds03.pdf</ref>).


The standard unit of thermodynamic temperature, currently defined in the [[SI system]] as °K (degrees Kelvin), selects as the fundamental fixed point the [[triple point]] of water.  One degree Kelvin, and therefore 1°C ([[Celsius]]), is specified by multiple standards bodies<ref>http://www.bipm.org/en/si/si_brochure/chapter2/2-1/kelvin.html</ref><ref>http://physics.nist.gov/cuu/Units/kelvin.html</ref> as the fraction 1/273.16 of waters triple point.  Formerly (until 1954<ref>http://physics.nist.gov/cuu/Units/kelvin.html</ref>) the definition developed by [[Anders Celsius]] had fixed the 0°C point at the "freezing point" of water.<ref>http://www.energyquest.ca.gov/scientists/celsius.html</ref>  It is now generally accepted that while the [[phase transition]] from solid to liquid water occurs at a predictable temperature (namely 0°C), the transition from liquid to solid water does not.  This is because the actual "Freezing" is dependent upon the previously mentioned [[nucleation]] as well as the temperature.{{Reflist}}</noinclude>
The standard unit of thermodynamic temperature, currently defined in the [[SI system]] as °K (degrees Kelvin), selects as the fundamental fixed point the [[triple point]] of water.  One degree Kelvin, and therefore 1°C ([[Celsius]]), is specified by multiple standards bodies<ref>http://www.bipm.org/en/si/si_brochure/chapter2/2-1/kelvin.html</ref><ref>http://physics.nist.gov/cuu/Units/kelvin.html</ref> as the fraction 1/273.16 of waters triple point.  Formerly (until 1954<ref>http://physics.nist.gov/cuu/Units/kelvin.html</ref>) the definition developed by [[Anders Celsius]] had fixed the 0°C point at the "freezing point" of water.<ref>http://www.energyquest.ca.gov/scientists/celsius.html</ref>  It is now generally accepted that while the [[phase transition]] from solid to liquid water occurs at a predictable temperature (namely 0°C), the transition from liquid to solid water does not.  This is because the actual "Freezing" is dependent upon the previously mentioned [[nucleation]] as well as the temperature.{{Reflist}}</noinclude>

Revision as of 15:28, 28 July 2010

Not measurable [1] [2]


Note: The freezing point of "pure" water is not measurable, whereas the melting point is. This is because pure water does not freeze without help of a solid crystallization kernel.[3] Very cold (metastable) pure liquid water can be obtained by "supercooling" pure water. Pure liquid water has been reported to be possible down to various extremely low temperatures: (-38°C to -45°C[4]) and (231 K=-43.9°C[5]).

The standard unit of thermodynamic temperature, currently defined in the SI system as °K (degrees Kelvin), selects as the fundamental fixed point the triple point of water. One degree Kelvin, and therefore 1°C (Celsius), is specified by multiple standards bodies[6][7] as the fraction 1/273.16 of waters triple point. Formerly (until 1954[8]) the definition developed by Anders Celsius had fixed the 0°C point at the "freezing point" of water.[9] It is now generally accepted that while the phase transition from solid to liquid water occurs at a predictable temperature (namely 0°C), the transition from liquid to solid water does not. This is because the actual "Freezing" is dependent upon the previously mentioned nucleation as well as the temperature.