Jacobians: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Meg Taylor
(rm cats, create {{subpages}})
imported>Meg Taylor
m (spelling: pricipal -> principal)
Line 3: Line 3:


Principal polarization:
Principal polarization:
The pricipal polarization of the Jacobian variety is given by the theta divisor: some shift from Pic<sup>g-1</sup> to to Jacobian of the image of Sym<sup>g-1</sup>C in
The principal polarization of the Jacobian variety is given by the theta divisor: some shift from Pic<sup>g-1</sup> to to Jacobian of the image of Sym<sup>g-1</sup>C in
Pic<sup>g-1</sup>.
Pic<sup>g-1</sup>.



Revision as of 18:08, 11 February 2010

This article is developed but not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable, developed Main Article is subject to a disclaimer.

The Jacobian variety of a smooth algebraic curve C is the variety of degree 0 divisors of C, up to ratinal equivalence; i.e. it is the kernel of the degree map from Pic(C) to the integers; sometimes also denoted as Pic0. It is an principally polarized Abelian variety of dimension g.

Principal polarization: The principal polarization of the Jacobian variety is given by the theta divisor: some shift from Picg-1 to to Jacobian of the image of Symg-1C in Picg-1.

Examples:

  • A genus 1 curve is naturally ismorphic to the variety of degree 1 divisors, and therefor to is isomorphic to it's Jacobian.

Related theorems and problems:

  • Abels theorem states that the map , which takes a curve to it's jacobian is an injection.
  • The Shottcky problem calls for the classification of the map above.