imported>Paul Wormer |
imported>Paul Wormer |
Line 42: |
Line 42: |
| \mathrm{Tr}( \mathbf{E}) &= n \qquad\hbox{(trace of identity matrix)}\\ | | \mathrm{Tr}( \mathbf{E}) &= n \qquad\hbox{(trace of identity matrix)}\\ |
| \mathrm{Tr}( \mathbf{O}) &= 0 \qquad\hbox{(trace of zero matrix)} \\ | | \mathrm{Tr}( \mathbf{O}) &= 0 \qquad\hbox{(trace of zero matrix)} \\ |
| | \mathrm{Tr}( \mathbf{ABC}) &= \mathrm{Tr}( \mathbf{CAB})=\mathrm{Tr}( \mathbf{BCA}) \\ |
| \mathrm{Tr}(c\mathbf{A}) & = c \mathrm{Tr}(\mathbf{A}) \quad c\in\mathbb{C} \\ | | \mathrm{Tr}(c\mathbf{A}) & = c \mathrm{Tr}(\mathbf{A}) \quad c\in\mathbb{C} \\ |
| \end{align} | | \end{align} |
In mathematics, a trace is a property of a matrix and of a linear operator on a vector space. The trace plays an important role in the representation theory of groups (the collection of traces is the character of the representation) and in statistical thermodynamics (the trace of a thermodynamic observable times the density operator is the thermodynamic average of the observable).
Definition for matrices
Let A be an n × n matrix; its trace is defined by
![{\displaystyle \mathrm {Tr} (\mathbf {A} )\;{\stackrel {\mathrm {def} }{=}}\;\sum _{i=1}^{n}A_{ii}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/18e550da1234e3bae9226231d748e67cf350bea7)
where Aii is the ith diagonal element of A.
Example
![{\displaystyle \mathbf {A} ={\begin{pmatrix}2.1&1.3&0.0\\5.0&-0.1&8.3\\7.0&-4.7&3.0\\\end{pmatrix}}\Longrightarrow \mathrm {Tr} (\mathbf {A} )=2.1-0.1+3.0=5.0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a4ed6f520eb7769b7ac7e77ac97a103691798720)
Theorem.
Let A and B be square finite-sized matrices, then Tr(A B) = Tr (B A).
Proof
![{\displaystyle \mathrm {Tr} (\mathbf {AB} )=\sum _{i=1}^{n}(\mathbf {AB} )_{ii}=\sum _{i=1}^{n}\sum _{j=1}^{n}\;A_{ij}B_{ji}=\sum _{j=1}^{n}\sum _{i=1}^{n}\;B_{ji}A_{ij}=\sum _{j=1}^{n}(\mathbf {BA} )_{jj}=\mathrm {Tr} (\mathbf {BA} )}](https://wikimedia.org/api/rest_v1/media/math/render/svg/059bf3aaea5fec90526b7e37c475dea669de91df)
Theorem
The trace of a matrix is invariant under a similarity transformation Tr(B−1A B) = Tr(A).
Proof
![{\displaystyle \mathrm {Tr} {\big (}\mathbf {B} ^{-1}(\mathbf {AB} ){\big )}=\mathrm {Tr} {\big (}(\mathbf {AB} )\mathbf {B} ^{-1}{\big )}=\mathrm {Tr} (\mathbf {AE} )=\mathrm {Tr} (\mathbf {A} ),}](https://wikimedia.org/api/rest_v1/media/math/render/svg/94a206b09430856c5af897abf7cdcffcb3bca717)
where we used B B−1 = E (the identity matrix).
Other properties of traces are (all matrices are n × n matrices):
![{\displaystyle {\begin{aligned}\mathrm {Tr} (\mathbf {A} +\mathbf {B} )&=\mathrm {Tr} (\mathbf {A} )+\mathrm {Tr} (\mathbf {B} )\\\mathrm {Tr} (\mathbf {E} )&=n\qquad {\hbox{(trace of identity matrix)}}\\\mathrm {Tr} (\mathbf {O} )&=0\qquad {\hbox{(trace of zero matrix)}}\\\mathrm {Tr} (\mathbf {ABC} )&=\mathrm {Tr} (\mathbf {CAB} )=\mathrm {Tr} (\mathbf {BCA} )\\\mathrm {Tr} (c\mathbf {A} )&=c\mathrm {Tr} (\mathbf {A} )\quad c\in \mathbb {C} \\\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/98a4f3b62d4586f8dbac92af9178a7acd7671472)
Definition for a linear operator on a finite-dimensional vector space
Let Vn be an n-dimensional vector space (also known as linear space).
Let
be a linear operator (also known as linear map) on this space,
.
Let
![{\displaystyle \{v_{1},v_{2},\ldots ,v_{n}\}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fcac395b5c561134d68acb76a660b5bec2c45633)
be a basis for Vn, then the matrix of
with respect to this basis is given by
![{\displaystyle {\hat {A}}v_{i}=\sum _{j=1}^{n}\;v_{j}A_{ji}\quad {\hbox{for}}\quad i=1,\ldots ,n,\quad {\hbox{and}}\quad \mathbf {A} \equiv (A_{ij}).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d53f0a844f52326a980d64405e1a87585efc7116)
Definition: The trace of the linear operator
is the trace of the matrix of the operator in any basis. This definition is possible since the trace is independent of the choice of basis.
We prove that a trace of an operator does not depend on choice of basis. Consider two bases connected by the non-singular matrix B (a basis transformation matrix),
![{\displaystyle w_{i}=\sum _{j=1}^{n}\;v_{j}B_{ji},\quad i=1,\ldots ,n.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/bec99a0e528643346ea8506682410bcae9c132a3)
Above we introduced the matrix A of
in the basis vi. Write A' for its matrix in the basis wi
![{\displaystyle {\hat {A}}w_{i}=\sum _{j=1}^{n}\;w_{j}A'_{ji}\quad {\hbox{with}}\quad \mathbf {A} '=(A'_{ij}).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f343e2d61fba98ea2e22e4cfed16d0817ba3d669)
It is not difficult to prove that
![{\displaystyle \mathbf {A} '=\mathbf {B} ^{-1}\;\mathbf {A} \;\mathbf {B} \quad \Longrightarrow \quad \mathrm {Tr} (\mathbf {A} ')=\mathrm {Tr} (\mathbf {A} ),}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b6095cf129c43f40276f3bcc290a17d459133fa7)
from which follows that the trace of
in both bases is equal.
Theorem
Let a linear operator
on Vn have n linearly independent eigenvectors,
![{\displaystyle {\hat {A}}\;v_{i}=\alpha _{i}v_{i}\quad {\hbox{with}}\quad \alpha _{i}\in \mathbb {C} \quad {\hbox{and}}\quad i=1,\ldots ,n.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/568e937e0890d700ba286a63e4f719cebfb57138)
Then its trace is the sum of the eigenvalues
![{\displaystyle \mathrm {Tr} ({\hat {A}})=\sum _{i=1}^{n}\alpha _{i}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d90ee42a3c79c2076212d14c190ab3ae814d0e77)
Proof
The matrix of
in basis of its eigenvectors is
![{\displaystyle {\hat {A}}\;v_{i}=\sum _{j=1}^{n}\;v_{j}(\alpha _{j}\delta _{ji})\quad \Longrightarrow \quad \mathbf {A} ={\begin{pmatrix}\alpha _{1}&0&\cdots &0\\0&\alpha _{2}&\cdots \\\cdots &&\ddots \\0&&&\alpha _{n}\\\end{pmatrix}},}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fdba7e4851fd5aac6663d5626532d87f43d15319)
where δji is the Kronecker delta.
Note. To avoid misunderstanding: not all linear operators on Vn possess n linearly independent eigenvectors.
Infinite-dimensional space
The trace of an operator on an infinite-dimensional linear space is not well-defined for all operators on all infinite-dimensional spaces. Even if we restrict our attention to infinite-dimensional spaces with countable bases, the generalization of the definition is not always possible. For instance, we saw above that the trace of the identity operator on a finite-dimensional space is equal to the dimension of the space, so that a simple extension of the definition leads to a trace of the identity operator that is infinite (i.e., not defined).
We consider an infinite-dimensional space with an inner product (a Hilbert space). Let
be a linear operator on this space with the property
![{\displaystyle ({\hat {T}}^{\dagger }{\hat {T}})\;v_{i}=\alpha _{i}^{2}\;v_{i},\quad i=1,2,\ldots ,\infty \quad {\hbox{and}}\quad \alpha _{i}\in \mathbb {R} ,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fde04e3b97c84c09f46719f0d90baf10db41d095)
where {vi} is an orthonormal basis of the space. Note that the operator
is self-adjoint and positive definite, i.e.,
![{\displaystyle \langle (T^{\dagger }T)w|w\rangle =\langle w|(T^{\dagger }T)w\rangle =\langle Tw|Tw\rangle \geq 0\quad {\hbox{for any}}\quad w.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5d63c72f36c251a73ea2722b63e6452951bddc10)
When the following sum converges,
![{\displaystyle \sum _{i=1}^{\infty }\alpha _{i}<\infty }](https://wikimedia.org/api/rest_v1/media/math/render/svg/67d607755fcc24e2ee5d5b60a01b2cebf8ce4925)
one may define the trace of
by
![{\displaystyle \mathrm {Tr} ({\hat {T}})\equiv \sum _{i=1}^{\infty }\langle v_{i}|T|v_{i}\rangle ,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a1fe2224aee59f69c46f3b3db9afb9c60127dba1)
i.e., it can be shown that this summation converges as well. As in the finite-dimensional case it can be proved that the trace is independent of the choice of (orthonormal) basis,
![{\displaystyle \mathrm {Tr} ({\hat {T}})=\sum _{i=1}^{\infty }\langle w_{i}|T|w_{i}\rangle <\infty ,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6d4a2a630f0c8e44e9dc3cfb7957477f95a05472)
for any orthonormal basis {wi}. Operators that have a well-defined trace are called "trace class operators" or "nuclear operators".
An important example is the exponential of the self-adjoint operator H,
![{\displaystyle e^{-\beta {\hat {H}}},\quad \beta \in \mathbb {R} ,\quad 0<\beta <\infty .}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9b8a0378a6f338a8fbc40a5fb58f08d24f517cb1)
The operator H being self-adjoint has only real eigenvalues εi. When H is bounded from below (its lowest eigenvalue is finite) then the sum
![{\displaystyle \mathrm {Tr} e^{-\beta H}=\sum _{i=1}^{\infty }e^{-\beta \epsilon _{i}}<\infty }](https://wikimedia.org/api/rest_v1/media/math/render/svg/cff36e1a495139c038dc310510625218b47272b3)
converges. This trace is the canonical partition function of statistical physics.
Reference
N. I Achieser and I. M. Glasmann, Theorie der linearen Operatoren im Hilbert Raum, Translated from the Russian by H. Baumgärtel, Verlag Harri Deutsch, Thun (1977). ISBN 3871443263