User:Dmitrii Kouznetsov/loginal: Difference between revisions
imported>Dmitrii Kouznetsov m (→Loginal should be invertable: misprint) |
imported>Dmitrii Kouznetsov m (→Conclusion: misprint) |
||
Line 112: | Line 112: | ||
==Conclusion== | ==Conclusion== | ||
Roughly, loginal of a | Roughly, loginal of a function allows to count, how many times the function should be applied to get the given function; | ||
this allows to apply a function some "fractal number'' of times. For summation and multiplication, loginal is easy to express. | this allows to apply a function some "fractal number'' of times. For summation and multiplication, loginal is easy to express. | ||
For exponential, loginal is operation of [[tetration]]. | For exponential, loginal is operation of [[tetration]]. |
Revision as of 04:56, 5 June 2008
Template:Under construction; Name of article is temporal.
Loginal of function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g} at some space S is function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle K } such that
- (0) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(K(t))=K(1+t) } for all Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t \in \rm S }
Loginal allow the solution Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} of equation
- (1) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f^n(x)=g(x)}
in form
- (2) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=K\!\left( \frac{1}{n} + K^{-1}(x)\right)}
Generalization
The straightforward generalization of equaiton (0) can be written in form
- (3) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g^a(K(t))=K(a+t) } for all Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t \in \rm S } and any Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a } from some set A that includes integers.
In some cases, it is possible to extend the set A to complex numbers.
Loginal should be invertable
As loginal Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle K} of function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g} is implemented, together with its inverse function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle K^{-1}} , the solution of equation (1) becomes straightforward:
- (4) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=g^{1/n}(x) = g^{1/n} \Big( K\! \Big(K^{-1}(x)\Big) \Big) } Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = K\! \left( \frac{1}{n} + K^{-1}(x) \right) }
Then, for the initial equation (1)
- (5) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f^2(x)=f(f(x))= f\!\left( K\!\left(\frac{1}{n} +K^{-1}(x) \right) \right) }
- (6) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f^2(x)= K\!\left( \frac{1}{n} +K^{-1} \left( K\!\left(\frac{1}{n} +K^{-1}(x) \right) \right) \right) }
- (7) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f^2(x)=K\left(\frac{1}{n}+\frac{1}{n} +K^{-1}(x) \right) =K\left(\frac{2}{n}+K^{-1}(x) \right) }
Similarly, for any Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m}
- (8) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f^{m+1}(x)= f(f^{m}(x))= K\left(\frac{1}{n}+\frac{m}{n} +K^{-1}(x) \right) =K\left(\frac{m+1}{n}+K^{-1}(x) \right) }
Special cases
For simple function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g} , it is easy to find its loginal.
Summation
In particular, if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g } means addition a constant Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c} , id est, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x)=x+c} , then
- (8) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle nc + K(t)=K(t+n) }
means that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle K(t)=t=K^{-1}(t)}
In such a way, this case is trivial.
Multiplication
If Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g } means multiplication by a constant Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c} , id est, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x)=cx} , then
- (9) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c^n K(t)=K(t+n) }
means that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle K(t)=c^t} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle K^{-1}(t)=\log_c(t)} .
Exponentiation
For exponentiation, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle K } is tetration,
- (10) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \exp(K(x))=K(x+1)} ;
or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \exp^n(K(x))=K(x+n)}
In particular, one can extract the square root of exponential, id est, to find finction Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f=\sqrt{\exp}=\exp^{1/2}} such that
- (12) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(f(x)) =\exp(x)}
The calculation is straightforward:
- (13) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)= \exp^{1/2}(x)= \exp^{1/2} \left( F(F^{-1}(x)) \right) = F\left(\frac{1}{2} + F^{-1}(x) \right) }
Checkback:
- (14) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(f(x))= F\!\left( \frac{1}{2}+F^{-1}\!\left( F\!\left( \frac{1}{2}+F^{-1}(x) \right) \right) \right) }
- (15) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(f(x))= F\!\left(\frac{1}{2}+\frac{1}{2}+F^{-1}(x)\right) }
- (16) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(f(x))= F\!\left(1+F^{-1}(x)\right)=\exp(F (F^{-1}(x))=\exp(x) }
Possible application
In the case when a signal is supposed to pass through a set of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N} identical elements, and the transfer function of the integral cirquit is known, the loginal of this transfer function allows to calculate the response function of each indifidual element, extracting root of power Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N} from the integral response function.
The elements have no need to be discreet, formula (4) can be applied for real values of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} as well. At least tetration (case of exponential function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g} ) seems to be naturally extendable for the complex values. The continuous case may refer to the nonlinear optical fiber cirquit.
Conclusion
Roughly, loginal of a function allows to count, how many times the function should be applied to get the given function; this allows to apply a function some "fractal number of times. For summation and multiplication, loginal is easy to express. For exponential, loginal is operation of tetration. In general case, finding of loginal Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle K} of a heneral function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g} is not trivial.
References
(needs to be cleaned up)
- Lars Kindermann. References about Iterative Roots and Fractional Iteration. http://reglos.de/lars/ffx.html
- A. Smith. Is there any way to approximate the solution of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)<math> given <math> f(f(x)) = g(x)} ?
Argonne National Laboratory, Division of Educational Programs. www.newton.dep.anl.gov/newton/askasci/1993/math/MATH023.HTM
- I.N. Baker, The iteration of entire transcendental functions and the solution of the functional equation f(f(z) = F(z). Math. Ann. 129 (1955), 174-180
- M. Bajraktarevic, Solution générale de l'équation fonctionelle Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f^N(x) = g(x)} . Publ. Inst. Math. Beograd (N.S.) 5(19) (1965), 115-124
- P. Erdös & E. Jabotinsky, On Analytic Iteration. J. Analyse Math. 8 (1960/61), 361-376
- G.M. Ewing & W.R. Utz, Continuous solutions of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f^n(x) = f(x)} . Can. J. Math. 5 (1953), 101-103
- K. Iga, Continuous half-iterates of functions. Manuscript from http://math.pepperdine.edu/~kiga | postscript
- R. Isaacs, Iterates of fractional order. Canad. J. Math. 2 (1950), 409-416.
- R. Isaacs, On Fractional Iteration. Technical Report No. 320, Department of Mathematical Sciences, The John Hopkins University, November 1979
- E. Jabotinsky, Analytic iteration. Trans. Amer. Math. Soc. 108 (1963), 457-477
- W. Jarczyk, A recurrent method of solving iterative functional equations. Prace Nauk. Uniw. Slask. Katowic. 1206 (1991)
- L. Kindermann, An Addition to Backpropagation for Computing Functional Roots. Proc. Int'l ICSC/IFAC Symp. on Neural Computation - NC'98, Vienna (1998), 424-427
- B. Gawel, On the uniqueness of continuous solutions of functional equations. Ann. Polon. Math. LX.3 (1995), 231-239
- H. Kneser, Reelle analytische Lösungen der Gleichung und verwandter Funktionalgleichungen. J. reine angew. Math. 187 (1950), 56-67
- J. Kobza, Iterative functional equation with piecewise linear. Journal of Computational and Applied Mathematics 115 (2000), 331-347
- M. Kuczma, On the functional equation . Ann. Polon. Math. 11 (1961) 161-175
- J.C.Lillo, The functional equation . Arkiv för Mat. 5 (1965), 357-361
- J.C.Lillo, The functional equation . Ann. Polon. Math. 19 (1967), 123-135
L.S.O. Liverpool, Fractional iteration near a fix point of multiplier 1. J. London Math. Soc. 41 (1979) | Homepage
- S. Lojasiewicz, Solotion générale de l'équation fonctionelle . Annales de la Societé Plonaise de Mathematique 24 (1951), 88-91
- J.L. Massera & A. Petracca, On the functional equation . Revista Union Mat. Argentinia 11 (1946), 206-211
- P.B. Miltersen, N.V Vinodchandran, O. Watanabe, Super-polynomial versus half-exponential circuit size in the exponential hierarchy. Research Report c-130, 1999. Dept. of Math and Comput. Sc., Tokyo Inst. of Tech.; also: BRICS Report Series RS-99-4, Dept. of Computer Science, Univ. Aarhus, 1999
- R.E. Rice, Fractional iterates. PhD Thesis, University of Massachusetts, Amherest (1977)
- R.E. Rice, Iterative square roots of Cebysev polynomials. Stochastica 3 (1979), 1-14
- R.E. Rice, B. Schweizer & A. Sklar, When is for all complex Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z<math>? Amer. Math. Monthly 87 (1980), 252-263 * M.C. Zdun, Differentiable fractional iteration. Bull. Acad. Sci. Polon. Sér. Sci. Math. Astronom. Phys. 25 (1977), 643-646 *Weinian Zhang, Discussion on iterated equation <math>\sum_{i=1}^n f^i(x)=F(x)} Chin. Sci. Bul. (Kexue Tongbao), 32 (1987), 21: 1444-1451
- Weinian Zhang, A generic property of globally smooth iterative roots. Scientia Sinica A, 38 (1995), 267-272
- Weinian Zhang, PM functions, their characteristic intervals and iterative roots. Annales Polonici Mathematici, LXV.2 (1997), 119-128
- Weinian Zhang, Discussion on the differentiable solutions of the iterated equation . Nonlinear Analysis, 15 (1990), 4: 387-398
- P. Walker, Infinitely differentiable generalized logarithmic and exponential functions. Mathematics of Computation 57 (1991), 723-733