Normal subgroup: Difference between revisions
imported>Richard Pinch (section on quotient groups, First Isomorphism Theorem) |
imported>Richard Pinch (intersection) |
||
Line 30: | Line 30: | ||
The smallest example of a non-normal subgroup is a subgroup of order two in the symmetric group on three elements. Explicitly, we can take the cyclic subgroup of order two generated by the 2-cycle <math>(12)</math> in the symmetric group of permutations on symbols <math>1,2,3</math>. | The smallest example of a non-normal subgroup is a subgroup of order two in the symmetric group on three elements. Explicitly, we can take the cyclic subgroup of order two generated by the 2-cycle <math>(12)</math> in the symmetric group of permutations on symbols <math>1,2,3</math>. | ||
==Properties== | |||
The [[intersection]] of any family of normal subgroups is again a normal subgroup. We can therefore define the normal subgroup ''generated'' by a subset ''S'' of a group ''G'' to be the intersection of all normal subgroups of ''G'' containing ''S''. | |||
==Quotient group== | ==Quotient group== |
Revision as of 15:37, 14 November 2008
Definition
A subgroup H of a group G is termed normal if the following equivalent conditions are satisfied:
- Given any and , we have
- H occurs as the kernel of a homomorphism from G. In other words, there is a homomorphism such that the inverse image of the identity element of K is H.
- Every inner automorphism of G sends H to within itself
- Every inner automorphism of G restricts to an automorphism of H
- The left cosets and right cosets of H are always equal:
Some elementary examples and nonexamples
All subgroups in Abelian groups
In an Abelian group, every subgroup is normal. This is because if is an Abelian group, and , then .
More generally, any subgroup inside the center of a group is normal.
It is not, however, true that if every subgroup of a group is normal, then the group must be Abelian. A counterexample is the quaternion group.
All characteristic subgroups
A characteristic subgroup of a group is a subgroup which is invariant under all automorphisms of the whole group. Characteristic subgroups are normal, because normality requires invariance only under inner automorphisms, which are a particular kind of automorphism.
In particular, subgroups like the center, the commutator subgroup, the Frattini subgroup are examples of characteristic, and hence normal, subgroups.
A smallest non-example
The smallest example of a non-normal subgroup is a subgroup of order two in the symmetric group on three elements. Explicitly, we can take the cyclic subgroup of order two generated by the 2-cycle in the symmetric group of permutations on symbols .
Properties
The intersection of any family of normal subgroups is again a normal subgroup. We can therefore define the normal subgroup generated by a subset S of a group G to be the intersection of all normal subgroups of G containing S.
Quotient group
The quotient group of a group G by a normal subgroup N is defined as the set of (left or right) cosets:
with the the group operations
and the coset as identity element. It is easy to check that these define a group structure on the set of cosets and that the quotient map is a group homomorphism.
First Isomorphism Theorem
The First Isomorphism Theorem for groups states that if is a group homomorphism then the kernel of f, say K, is a normal subgroup of G, and the map f factors through the quotient map and an injective homomorphism i:
External links
- Normal subgroup on Mathworld
- Normal subgroup on Planetmath