Talk:Monty Hall problem: Difference between revisions
Jump to navigation
Jump to search
imported>Richard D. Gill |
imported>Richard D. Gill (paradox is not a contradiction, but an apparent contradiction) |
||
Line 27: | Line 27: | ||
: I think there are two particularly common solutions: one focusing on the overall probability of winning by switching, and the other focussing on the conditional probability of winning by switching given the specific doors chosen and opened. The present draft intro contains both. [[User:Richard D. Gill|Richard D. Gill]] 23:26, 1 February 2011 (UTC) | : I think there are two particularly common solutions: one focusing on the overall probability of winning by switching, and the other focussing on the conditional probability of winning by switching given the specific doors chosen and opened. The present draft intro contains both. [[User:Richard D. Gill|Richard D. Gill]] 23:26, 1 February 2011 (UTC) | ||
: By the way, the meaning I am used to of the word "paradox" is an <i>apparent</i> contradiction. And there certainly is an apparent contradiction between ordinary people's immediate and instinctive solution "50-50, so don't switch", and the "right" solution: "switching gives the car with probability 2/3". [[User:Richard D. Gill|Richard D. Gill]] 15:39, 2 February 2011 (UTC) |
Revision as of 09:39, 2 February 2011
Archived earlier talk
In order to regain focus I created a first talk archive of talk up to this point: Talk:Monty_Hall_problem/Archive_1. Richard D. Gill 15:21, 2 February 2011 (UTC)
General remarks
This talk page has quickly become very long with a difficult to follow structure. I'd like to make a few general remarks:
- Let us avoid to repeat and continue the endless (and mostly useless) discussion of this problem.
- The MHP is not a "paradox". Its solution may be surprising, but it is not paradoxical.
- There are not two (or more) "solutions".
- Once the question has been unambiguously posed there is only one solution -- the correct solution.
- There may be (essentially) different arguments leading to this correct solution.
- There may be several (didactically) different ways to present the same argument.
What should an article on the MHP contain (with the reader searching information in mind)? My answer:
- It should state the problem and present its solution as brief and as clear (and in an as informal language) as possible.
- It should summarize the history of the problem and the disputes it has caused.
- It should not contain a large amount of historical details, different approaches, discussion of subtleties, etc. that the ordinary reader will not want, and that would probably be confusing for him.
Supplementary material can be presented on subpages or separate pages:
- A page on the detailed history of the problem.
- A page on the discussion caused by the problem.
- A (Catalog) subpage containing various ways to present the solution(s). It may help a reader to find an explanation he likes.
--Peter Schmitt 13:42, 1 February 2011 (UTC)
- I agree with everything you say here Peter, except for one thing. MHP is defined (IMHO) by the definitely ambiguous words of Marilyn Vos Savant quoted in the article. Both before her popularization of the problem, and later, different authorities have translated or transformed her problem into definitely different mathematically unambiguous problems. And I'm only referring to problems to which the solution is "switch"! That is part of the reason why there is, I think, not a unique "correct solution" - there are as many correct solutions as there are decent unambiguous formulations.
- I think there are two particularly common solutions: one focusing on the overall probability of winning by switching, and the other focussing on the conditional probability of winning by switching given the specific doors chosen and opened. The present draft intro contains both. Richard D. Gill 23:26, 1 February 2011 (UTC)
- By the way, the meaning I am used to of the word "paradox" is an apparent contradiction. And there certainly is an apparent contradiction between ordinary people's immediate and instinctive solution "50-50, so don't switch", and the "right" solution: "switching gives the car with probability 2/3". Richard D. Gill 15:39, 2 February 2011 (UTC)