Petroleum naphtha: Difference between revisions
imported>Milton Beychok m (Added another section on "Other uses".) |
imported>Milton Beychok m (Added a reference) |
||
Line 1: | Line 1: | ||
{{subpages}} | {{subpages}} | ||
'''Naphtha''' is an intermediate hydrocarbon liquid stream derived from the [[Petroleum refining processes|refining]] of [[crude oil]].<ref name=Handwerk>{{cite book|author=Gary, J.H. and Handwerk, G.E.|title=Petroleum Refining Technology and Economics|edition=2nd Edition|publisher=Marcel Dekker, Inc|year=1984|id=ISBN 0-8247-7150-8}}</ref><ref name=Leffler>{{cite book|author=Leffler, W.L. |title=Petroleum refining for the nontechnical person|edition=2nd Edition|publisher=PennWell Books|year=1985|id=ISBN 0-87814-280-0}}</ref> It is most usually [[Hydrodesulfurization|desulfurized]] and then [[Catalytic reforming|catalytically reformed]], which re-arranges or re-structures the [[hydrocarbon]] [[molecules]] in the naphtha as well as breaking some of the molecules into smaller molecules to produce a high-[[octane]] component of [[gasoline]] (or [[petrol]]). | '''Naphtha''' is an intermediate hydrocarbon liquid stream derived from the [[Petroleum refining processes|refining]] of [[crude oil]].<ref name=Handwerk>{{cite book|author=Gary, J.H. and Handwerk, G.E.|title=Petroleum Refining Technology and Economics|edition=2nd Edition|publisher=Marcel Dekker, Inc|year=1984|id=ISBN 0-8247-7150-8}}</ref><ref name=Leffler>{{cite book|author=Leffler, W.L. |title=Petroleum refining for the nontechnical person|edition=2nd Edition|publisher=PennWell Books|year=1985|id=ISBN 0-87814-280-0}}</ref><ref>{{cite book|author=James G, Speight|title=The Chemistry and Technology of Petroelum|edition=Fourth Edition|publisher=CRC Press|year=2006|id=0-8493-9067-2}}</ref> It is most usually [[Hydrodesulfurization|desulfurized]] and then [[Catalytic reforming|catalytically reformed]], which re-arranges or re-structures the [[hydrocarbon]] [[molecules]] in the naphtha as well as breaking some of the molecules into smaller molecules to produce a high-[[octane]] component of [[gasoline]] (or [[petrol]]). | ||
== Where the naptha is obtained == | == Where the naptha is obtained == |
Revision as of 01:46, 4 February 2008
Naphtha is an intermediate hydrocarbon liquid stream derived from the refining of crude oil.[1][2][3] It is most usually desulfurized and then catalytically reformed, which re-arranges or re-structures the hydrocarbon molecules in the naphtha as well as breaking some of the molecules into smaller molecules to produce a high-octane component of gasoline (or petrol).
Where the naptha is obtained
The first unit process in a petroleum refinery is the crude oil distillation unit. The overhead liquid distillate from that unit is called virgin or straight-run naphtha and that distillate is the largest source of naphtha in most petroleum refineries. The naphtha is a mixture of very many different hydrocarbon compounds. It has an initial boiling point of about 35 °C and a final boiling point of about 200 °C, and it contains paraffin, naphthene (cyclic paraffins) and aromatic hydrocarbons ranging from those containing 4 carbon atoms to those containing about 10 or 11 carbon atoms.
The virgin naphtha is often further distilled to produce a light naphtha containing most (but not all) of the hydrocarbons with 6 or less carbon atoms and a heavy naphtha containing most (but not all) of the hydrocarbons with more than 6 carbon atoms. The heavy naphtha has an initial boiling point of about 140 to 150 °C and a final boiling point of about 190 to 205 °C.
It is the virgin heavy naphtha that is usually processed in a catalytic reformer because the light naphtha has molecules with 6 or less carbon atoms which, when reformed, tend to crack into butane and lower molecular weight hydrocarbons which are not useful as high-octane gasoline blending components. Also, the molecules with 6 carbon atoms tend to form aromatics which is undesirable because governmental environmental regulations in a number of countries limit the amount of aromatics (most particularly benzene) that gasoline may contain.[4][5][6]
Types of virgin naphthas
It should be noted that there are a great many petroleum crude oil sources worldwide and each crude oil has its own unique composition or assay. Also, not all refineries process the same crude oils and each refinery produces its own virgin naphthas with their own unique initial and final boiling points. In other words, naphtha is a generic term rather than a specific term.
The table just below lists some fairly typical virgin heavy naphthas, available for catalytic reforming, derived from various crude oils. It can be seen that they differ significantly in their content of paraffins, naphthenes and aromatics:
Crude oil name Location |
Barrow Island Australia[7] |
Mutineer-Exeter Australia[8] |
CPC Blend Kazakhstan[9] |
Draugen North Sea[10] |
---|---|---|---|---|
Initial boiling point, °C | 149 | 140 | 149 | 150 |
Final boiling point, °C | 204 | 190 | 204 | 180 |
Paraffins, liquid volume % | 46 | 62 | 57 | 38 |
Naphthenes, liquid volume % | 42 | 32 | 27 | 45 |
Aromatics, liquid volume % | 12 | 6 | 16 | 17 |
Cracked naphthas
Some refinery naphthas also contain some olefinic hydrocarbons, such as naphthas derived from the fluid catalytic cracking, visbreakers and coking processes used in many refineries. Those olefin-containing naphthas are often referred to as cracked naphthas.
In some (but not all) petroleum refineries, the cracked naphthas are desulfurized and catalytically reformed (as are the virgin naphthas) to produce additional high-octane gasoline components.
Other uses
Some refineries also produce a small amount of specialty naphthas for use as solvents, paint removers, cigarette lighter fuel, portable camping stove fuel and lantern fuel. Those specialty naphthas are subjected to various purification processes. Sometimes the specialty naphthas are called white oil or white gas.
On a much larger scale, naphtha is also used in the petrochemical industry as feedstock to steam reformers for the production of hydrogen, ethylene and other olefins.
References
- ↑ Gary, J.H. and Handwerk, G.E. (1984). Petroleum Refining Technology and Economics, 2nd Edition. Marcel Dekker, Inc. ISBN 0-8247-7150-8.
- ↑ Leffler, W.L. (1985). Petroleum refining for the nontechnical person, 2nd Edition. PennWell Books. ISBN 0-87814-280-0.
- ↑ James G, Speight (2006). The Chemistry and Technology of Petroelum, Fourth Edition. CRC Press. 0-8493-9067-2.
- ↑ Canadian regulations on benzene in gasoline
- ↑ United Kingdom regulations on benzene in gasoline
- ↑ USA regulations on benzene in gasoline
- ↑ Barrow Island crude oil assay
- ↑ Mutineer-Exeter crude oil assay
- ↑ CPC Blend crude oil assay
- ↑ Draugen crude oil assay
- Pages using ISBN magic links
- Editable Main Articles with Citable Versions
- CZ Live
- Engineering Workgroup
- Chemistry Workgroup
- Chemical Engineering Subgroup
- Articles written in American English
- Advanced Articles written in American English
- All Content
- Engineering Content
- Chemistry Content
- Chemical Engineering tag