Category of functors: Difference between revisions
Jump to navigation
Jump to search
imported>Giovanni Antonio DiMatteo |
imported>Giovanni Antonio DiMatteo (→The category of functors: spelling bee) |
||
Line 6: | Line 6: | ||
#Objects are '''functors''' <math>F:C^{op}\to D</math> | #Objects are '''functors''' <math>F:C^{op}\to D</math> | ||
#A morphism of functors <math>F,G</math> is a '''natural | #A morphism of functors <math>F,G</math> is a '''natural transformation''' <math>\eta:F\to G</math>; i.e., for each object <math>U</math> of <math>C</math>, a morphism in <math>D</math> <math>\eta_U:F(U)\to G(U)</math> such that for all morphisms <math>f:U\to V</math> in <math>C^{op}</math>, the diagram (DIAGRAM) commutes. | ||
A ''natural isomorphism'' is a natural tranformation <math>\eta</math> such that <math>\eta_U</math> is an isomorphism in <math>D</math> for every object <math>U</math>. One can verify that natural isomorphisms are indeed isomorphisms in the category of functors. | A ''natural isomorphism'' is a natural tranformation <math>\eta</math> such that <math>\eta_U</math> is an isomorphism in <math>D</math> for every object <math>U</math>. One can verify that natural isomorphisms are indeed isomorphisms in the category of functors. |
Revision as of 15:51, 19 December 2007
This article focuses on the category of contravariant functors between two categories.
The category of functors
Let and be two categories. The category of functors has
- Objects are functors
- A morphism of functors is a natural transformation ; i.e., for each object of , a morphism in such that for all morphisms in , the diagram (DIAGRAM) commutes.
A natural isomorphism is a natural tranformation such that is an isomorphism in for every object . One can verify that natural isomorphisms are indeed isomorphisms in the category of functors.
An important class of functors are the representable functors; i.e., functors that are naturally isomorphic to a functor of the form .
Examples
- In the theory of schemes, the presheaves are often referred to as the functor of points of the scheme X. Yoneda's lemma allows one to think of a scheme as a functor in some sense, which becomes a powerful interpretation; indeed, meaningful geometric concepts manifest themselves naturally in this language, including (for example) functorial characterizations of smooth morphisms of schemes.
The Yoneda lemma
Let be a category and let be objects of . Then
- If is any contravariant functor , then the natural transformations of to are in correspondence with the elements of the set .
- If the functors and are isomorphic, then and are isomorphic in . More generally, the functor , , is an equivalence of categories between and the full subcategory of representable functors in .
References
- David Eisenbud; Joe Harris (1998). The Geometry of Schemes. Springer-Verlag. ISBN 0-387-98637-5.