Inner product: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Paul Wormer
imported>Paul Wormer
No edit summary
Line 13: Line 13:


Note that some authors, especially those working in [[quantum mechanics]], may define an inner product to be anti-linear in the first slot and linear in the second slot, this is just a matter of preference. Moreover, if ''F'' is a subfield of the real numbers <math>\mathbb{R}</math> then the inner product becomes a ''bilinear'' map from <math>X \times X </math> to <math>\mathbb{R}</math>, that is, it becomes linear in both slots.
Note that some authors, especially those working in [[quantum mechanics]], may define an inner product to be anti-linear in the first slot and linear in the second slot, this is just a matter of preference. Moreover, if ''F'' is a subfield of the real numbers <math>\mathbb{R}</math> then the inner product becomes a ''bilinear'' map from <math>X \times X </math> to <math>\mathbb{R}</math>, that is, it becomes linear in both slots.
==Reference ==
<references />


==Norm and topology induced by an inner product==
==Norm and topology induced by an inner product==
The inner product induces a [[norm]]  <math>\|\cdot\|</math> on ''X'' defined by <math>\|x\|=\langle x,x \rangle^{1/2}</math>. Therefore it also induces a [[metric space#metric topology|metric topology]] on ''X'' via the metric <math>d(x,y)=\|x-y\|</math>.
The inner product induces a [[norm]]  <math>\|\cdot\|</math> on ''X'' defined by <math>\|x\|=\langle x,x \rangle^{1/2}</math>. Therefore it also induces a [[metric space#metric topology|metric topology]] on ''X'' via the metric <math>d(x,y)=\|x-y\|</math>.
==Reference ==
<references />





Revision as of 07:38, 5 October 2007

In mathematics, an inner product is an abstract notion on general vector spaces that is a generalization of the concept of the dot product in the Euclidean spaces. Among other things, the inner product on a vector space makes it possible to define the geometric operation of projection onto a closed (in the metric topology induced by the inner product) subspace, just like how the dot product makes it possible to define, in the Euclidean spaces, the projection of a vector onto the subspace spanned by a set of other vectors. The projection operation is a powerful geometric tool that makes the inner product a desirable convenience, especially for the purposes of optimization and approximation.

Formal definition of inner product

Let X be a vector space over a sub-field F of the complex numbers. An inner product on X is a sesquilinear[1] map from to with the following properties:

  1. (linearity in the first slot)
  2. (anti-linearity in the second slot)

Properties 1 and 2 imply that .

Note that some authors, especially those working in quantum mechanics, may define an inner product to be anti-linear in the first slot and linear in the second slot, this is just a matter of preference. Moreover, if F is a subfield of the real numbers then the inner product becomes a bilinear map from to , that is, it becomes linear in both slots.

Norm and topology induced by an inner product

The inner product induces a norm on X defined by . Therefore it also induces a metric topology on X via the metric .

Reference

  1. T. Kato, A Short Introduction to Perturbation Theory for Linear Operators, Springer-Verlag, New York (1982), ISBN 0-387-90666-5 p. 49


See also

Inner product space

Hilbert space

Norm