imported>Paul Wormer |
imported>Paul Wormer |
Line 64: |
Line 64: |
| </math> | | </math> |
| Note that the phase factor (-1)<sup>''m''</sup> arising in this expression is ''not'' due to some arbitrary phase convention, but arises from expansion of (1-''x''²)<sup>m</sup>. | | Note that the phase factor (-1)<sup>''m''</sup> arising in this expression is ''not'' due to some arbitrary phase convention, but arises from expansion of (1-''x''²)<sup>m</sup>. |
| | ==Orthogonality relations== |
| | Important integral relations are |
| | :<math> |
| | \int_{-1}^{1} P^{(m)}_{\ell}(x) P^{(m)}_{\ell'}(x) d x = |
| | \frac{2\delta_{\ell\ell'}(\ell+m)!}{(2\ell+1)(\ell-m)!} |
| | </math> |
| | |
| | :<math> |
| | \int_{-1}^{1} P^{(m)}_{\ell}(x) P^{(n)}_{\ell}(x) \frac{d x}{1-x^2} = |
| | \frac{\delta_{mn}(\ell+m)!}{m(\ell-m)!} |
| | </math> |
Revision as of 08:28, 22 August 2007
In mathematics and physics, an associated Legendre function Pl(m) is related to a Legendre polynomial Pl by the following equation
![{\displaystyle P_{\ell }^{(m)}(x)=(1-x^{2})^{m/2}{\frac {dP_{\ell }(x)}{dx^{\ell }}}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d944e7d7af5a3d90bdb7ae38a65677999c748e98)
For even m the associated Legendre function is a polynomial, for odd m the function contains the factor (1-x ² )½ and hence is not a polynomial.
The associated Legendre polynomials are important in quantum mechanics and potential theory.
Differential equation
Define
![{\displaystyle \Pi _{\ell }^{(m)}(x)\equiv {\frac {d^{m}P_{\ell }(x)}{dx^{m}}},}](https://wikimedia.org/api/rest_v1/media/math/render/svg/00b91d322534ed8ca77218f13b2485a9d32c9ca2)
where Pl(x) is a Legendre polynomial.
Differentiating the Legendre differential equation:
![{\displaystyle (1-x^{2}){\frac {d^{2}\Pi _{\ell }^{(0)}(x)}{dx^{2}}}-2x{\frac {d\Pi _{\ell }^{(0)}(x)}{dx}}+\ell (\ell +1)\Pi _{\ell }^{(0)}(x)=0,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2eaa2f801f1a4b30cfc8a580e021ea57adb49642)
m times gives an equation for Π(m)l
![{\displaystyle (1-x^{2}){\frac {d^{2}\Pi _{\ell }^{(m)}(x)}{dx^{2}}}-2(m+1)x{\frac {d\Pi _{\ell }^{(m)}(x)}{dx}}+\left[\ell (\ell +1)-m(m+1)\right]\Pi _{\ell }^{(m)}(x)=0.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f55acd236ce3001a02eb1f8137d2cadc3da528d7)
After substitution of
![{\displaystyle \Pi _{\ell }^{(m)}(x)=(1-x^{2})^{-m/2}P_{\ell }^{(m)}(x),}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2860f108779001acae3bd1c5eaddc36a46ba9078)
we find, after multiplying through with
, that the associated Legendre differential equation holds for the associated Legendre functions
![{\displaystyle (1-x^{2}){\frac {d^{2}P_{\ell }^{(m)}(x)}{dx^{2}}}-2x{\frac {dP_{\ell }^{(m)}(x)}{dx}}+\left[\ell (\ell +1)-{\frac {m^{2}}{1-x^{2}}}\right]P_{\ell }^{(m)}(x).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/df1caa81681ff0254662e2b4ba39f87b838c1965)
In physical applications usually x = cosθ, then then associated Legendre differential equation takes the form
![{\displaystyle {\frac {1}{\sin \theta }}{\frac {d}{d\theta }}\sin \theta {\frac {d}{d\theta }}P_{\ell }^{(m)}+\left[\ell (\ell +1)-{\frac {m^{2}}{\sin ^{2}\theta }}\right]P_{\ell }^{(m)}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6f60c562807c12f8b7169bbf14d828dd84cb252e)
Extension to negative m
By the Rodrigues formula, one obtains
![{\displaystyle P_{\ell }^{(m)}(x)={\frac {1}{2^{\ell }\ell !}}(1-x^{2})^{m/2}\ {\frac {d^{\ell +m}}{dx^{\ell +m}}}(x^{2}-1)^{\ell }.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6887a90bbd0c960d04b013014e3ee66b23e15920)
This equation allows extension of the range of m to: -l ≤ m ≤ l.
Since the associated Legendre equation is invariant under the substitution m → -m, the equations for Pl( ±m), resulting from this expression, are proportional.
To obtain the proportionality constant we consider
![{\displaystyle (1-x^{2})^{-m/2}{\frac {d^{\ell -m}}{dx^{\ell -m}}}(x^{2}-1)^{\ell }=c_{lm}(1-x^{2})^{m/2}{\frac {d^{\ell +m}}{dx^{\ell +m}}}(x^{2}-1)^{\ell },\qquad 0\leq m\leq \ell ,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/84e0a48c47ddd350c70a906e09c2cdaf1c086c32)
and we bring the factor (1-x²)-m/2 to the other side.
Equate the coefficient of the highest power of x on the left and right hand side of
![{\displaystyle {\frac {d^{\ell -m}}{dx^{\ell -m}}}(x^{2}-1)^{\ell }=c_{lm}(1-x^{2})^{m}{\frac {d^{\ell +m}}{dx^{\ell +m}}}(x^{2}-1)^{\ell },\qquad 0\leq m\leq \ell ,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/90f4fd149954bfc866dad3a02f11609ffe51312c)
and it follows that the proportionality constant is
![{\displaystyle c_{lm}=(-1)^{m}{\frac {(\ell -m)!}{(\ell +m)!}},\qquad 0\leq m\leq \ell ,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7cbcf796af7999bf581bf7c5c7421892562455e9)
so that the associated Legendre functions of same |m| are related to each other by
![{\displaystyle P_{\ell }^{(-|m|)}(x)=(-1)^{m}{\frac {(\ell -|m|)!}{(\ell +|m|)!}}P_{\ell }^{(|m|)}(x).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4da2c7c71b8132b8c9d42daf4c66d70b9b6faf60)
Note that the phase factor (-1)m arising in this expression is not due to some arbitrary phase convention, but arises from expansion of (1-x²)m.
Orthogonality relations
Important integral relations are
![{\displaystyle \int _{-1}^{1}P_{\ell }^{(m)}(x)P_{\ell '}^{(m)}(x)dx={\frac {2\delta _{\ell \ell '}(\ell +m)!}{(2\ell +1)(\ell -m)!}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f5911212d269624c767b765b29bcc448e50f0749)
![{\displaystyle \int _{-1}^{1}P_{\ell }^{(m)}(x)P_{\ell }^{(n)}(x){\frac {dx}{1-x^{2}}}={\frac {\delta _{mn}(\ell +m)!}{m(\ell -m)!}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e4ecd44afbd726b0d71fac3108256f87f0f430ac)