Electromagnetic spectrum: Difference between revisions
Jump to navigation
Jump to search
imported>Niek Sanders m (Added wavenumber to descriptors of spectral location.) |
imported>Subpagination Bot m (Add {{subpages}} and remove any categories (details)) |
||
Line 1: | Line 1: | ||
{{subpages}} | |||
The '''Electromagnetic Spectrum''' is the name given to the range of [[Electromagnetic radiation]] covering all [[frequencies]] and [[wavelengths]]. It includes [[radio]] and [[TV]] transmission, [[Microwaves]], [[Infrared]], visible [[light]], [[Ultraviolet]], [[X-rays]], and [[Gamma rays]]. | The '''Electromagnetic Spectrum''' is the name given to the range of [[Electromagnetic radiation]] covering all [[frequencies]] and [[wavelengths]]. It includes [[radio]] and [[TV]] transmission, [[Microwaves]], [[Infrared]], visible [[light]], [[Ultraviolet]], [[X-rays]], and [[Gamma rays]]. | ||
Line 18: | Line 20: | ||
* Young and Freedman. ''University Physics''. Addison-Wesley Publishing Company. ISBN 0-201-31132-1 | * Young and Freedman. ''University Physics''. Addison-Wesley Publishing Company. ISBN 0-201-31132-1 | ||
* [http://imagine.gsfc.nasa.gov/docs/science/know_l1/emspectrum.html NASA introduction to electromagnetic spectrum] | * [http://imagine.gsfc.nasa.gov/docs/science/know_l1/emspectrum.html NASA introduction to electromagnetic spectrum] | ||
Revision as of 09:36, 26 September 2007
The Electromagnetic Spectrum is the name given to the range of Electromagnetic radiation covering all frequencies and wavelengths. It includes radio and TV transmission, Microwaves, Infrared, visible light, Ultraviolet, X-rays, and Gamma rays.
Electromagnetic radiation
- All electromagnetic radiation can be described in terms of its Energy (E), frequency (f), wavenumber (v'), or wavelength (). These properties are all related by the following equations:
- ,
- ,
where c = 299,792,458 m/s (the speed of light) and h = 6.626 x 10-34 Js (Planck's constant)
- As well as the wavelike properties of EM radiation several effects particularly of the emission and absorption of light behave like particles. That is, the energy carried by light waves is packaged in discrete bundles called photons or quanta. This wave-particle duality is described in quantum electrodynamics, a theory which began to be developed around 1930.
References
- Young and Freedman. University Physics. Addison-Wesley Publishing Company. ISBN 0-201-31132-1
- NASA introduction to electromagnetic spectrum