Unique factorization: Difference between revisions
imported>Greg Martin m (Fundamental Theorem of Arithmetic) |
imported>Michael Hardy (The first sentence was not even a sentence and lacked any context setting. This article certainly needs work. Probably I'll be back.) |
||
Line 1: | Line 1: | ||
also known as the | In [[mathematics]], the '''unique factorization theorem''', also known as the '''fundamental theorem of arithmetic''' states that every integer can be expressed as a product of [[prime number]]s in essentially only one way. | ||
== Proof == | == Proof == |
Revision as of 17:01, 6 May 2007
In mathematics, the unique factorization theorem, also known as the fundamental theorem of arithmetic states that every integer can be expressed as a product of prime numbers in essentially only one way.
Proof
Every integer can be written in a unique way as a product of prime factors, up to reordering. To see why this is true, assume that can be written as a product of prime factors in two ways
We may now use a technique known as mathematical induction to show that the two prime decompositions are really the same.
Consider the prime factor . We know that
Using the second definition of prime numbers, it follows that divides one of the q-factors, say . Using the first definition, is in fact equal to
Now, if we set , we may write
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N_1 = p_2 p_3 \cdots p_m}
and
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N_1 = q_1 q_2 \cdots q_{i-1} q_{i+1} \cdots q_n}
In other words, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N_1} is the product of all the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q} 's except Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q_i} .
Continuing in this way, we obtain a sequence of numbers Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N = N_0 > N_1 > N_2 > \cdots > N_n = 1} where each Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N_{\alpha}} is obtained by dividing Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N_{\alpha - 1}} by a prime factor. In particular, we see that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m = n} and that there is some permutation ("rearrangement") σ of the indices Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1, 2, \ldots n} such that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p_i = q_{\sigma(i)}} . Said differently, the two factorizations of N must be the same up to a possible rearrangement of terms.