Pauli spin matrices: Difference between revisions
Jump to navigation
Jump to search
imported>Michael Hardy m (→Commutation relations: alignment of punctuation) |
imported>Subpagination Bot m (Add {{subpages}} and remove any categories (details)) |
||
Line 1: | Line 1: | ||
{{subpages}} | |||
The '''Pauli spin matrices''' are a set of unitary [[Hermitian matrix|Hermitian matrices]] which form an orthogonal basis (along with the identity matrix) for the real [[Hilbert space]] of 2 × 2 Hermitian matrices and for the complex Hilbert spaces of all 2 × 2 matrices. They are usually denoted: | The '''Pauli spin matrices''' are a set of unitary [[Hermitian matrix|Hermitian matrices]] which form an orthogonal basis (along with the identity matrix) for the real [[Hilbert space]] of 2 × 2 Hermitian matrices and for the complex Hilbert spaces of all 2 × 2 matrices. They are usually denoted: | ||
Line 44: | Line 46: | ||
:<math>\sigma_i \sigma_j = \delta_{ij} \cdot I + i \varepsilon_{ijk} \sigma_k. \,</math> | :<math>\sigma_i \sigma_j = \delta_{ij} \cdot I + i \varepsilon_{ijk} \sigma_k. \,</math> | ||
Revision as of 12:01, 12 November 2007
The Pauli spin matrices are a set of unitary Hermitian matrices which form an orthogonal basis (along with the identity matrix) for the real Hilbert space of 2 × 2 Hermitian matrices and for the complex Hilbert spaces of all 2 × 2 matrices. They are usually denoted:
Algebraic properties
For i = 1, 2, 3:
Commutation relations
The Pauli matrices obey the following commutation and anticommutation relations:
- where is the Levi-Civita symbol, is the Kronecker delta, and I is the identity matrix.
The above two relations can be summarized as: