Special function/Catalogs/Catalog: Difference between revisions
< Special function | Catalogs
Jump to navigation
Jump to search
imported>Fredrik Johansson (a start (having fun making lists per Larry's suggestion!)) |
imported>Fredrik Johansson |
||
Line 49: | Line 49: | ||
|<math>\tan(x)</math> | |<math>\tan(x)</math> | ||
|Opposite / Adjacent | |Opposite / Adjacent | ||
| | |||
|- | |||
|[[Cosecant]] | |||
|<math>\csc(x)</math> | |||
|Hypotenuse / Opposite | |||
| | |||
|- | |||
|[[Secant]] | |||
|<math>\sec(x)</math> | |||
|Hypotenuse / Adjacent | |||
| | |||
|- | |||
|[[Cotangent]] | |||
|<math>\cot(x)</math> | |||
|Adjacent / Opposite | |||
| | | | ||
|} | |} |
Revision as of 08:11, 25 April 2007
Algebraic functions
Complex parts
Elementary transcendental functions
Name | Notation |
---|---|
Exponential function | , |
Natural logarithm | , |
Trigonometric functions
Name | Notation | Triangle formula | Exponential formula |
---|---|---|---|
Sine | Opposite / Hypotenuse | ||
Cosine | Adjacent / Hypotenuse | ||
Tangent | Opposite / Adjacent | ||
Cosecant | Hypotenuse / Opposite | ||
Secant | Hypotenuse / Adjacent | ||
Cotangent | Adjacent / Opposite |
Hyperbolic functions
Inverse trigonometric functions
Inverse hyperbolic functions
Other
Nonelementary integrals
Elliptic integrals
Orthogonal polynomials
See catalog of orthogonal polynomials for a more detailed listing.
Name | Notation | Interval | Weight function |
---|---|---|---|
Chebyshev (first kind) | |||
Chebyshev (second kind) | |||
Legendre | |||
Hermite | |||
Laguerre | |||
Associated Laguerre |
Name | Notation | Discrete formula | Continuous formula |
---|---|---|---|
Factorial | |||
Gamma function | |||
Double factorial |
|
||
Binomial coefficient | |||
Rising factorial | |||
Falling factorial | |||
Beta function | |||
Harmonic number | |||
Digamma function | |||
Polygamma function (of order m) |
- Incomplete gamma function
- Incomplete beta function
- Regularized gamma function
- Regularized beta function
- Barnes G-function
Notes:
- is Euler's constant
- The polygamma functions are generalized to continuous m by the Hurwitz zeta function
Hypergeometric functions
Note: many of the preceding functions are special cases of the following: