Set (mathematics): Difference between revisions
imported>Howard C. Berkowitz (Moved external links to subpage) |
imported>Jitse Niesen (rewrite first paragraphs, mainly to make the distinction between sets and tuples, per discussion on talk page) |
||
Line 1: | Line 1: | ||
{{subpages}} | {{subpages}} | ||
''' | Informally, a '''set''' is thought of as any collection of distinct elements. Sets and their formal definition are defined in a branch of [[mathematics]] known as [[set theory]]. | ||
==Introduction== | |||
The basic property of a set is that it contains elements. For instance, we can talk about the set that has as its elements the numbers 1, 2 and 3. This set is denoted {1, 2, 3}. | |||
A set is solely determined by its elements (this is called ''[[extensionality]]''). In particular, a set cannot contain an element twice. The set {1, 2, 2, 3} contains the elements 1, 2 and 3 and is thus the same as the set {1, 2, 3}. This is the difference between sets and [[multiset]]s; considered as multisets, {1, 2, 2, 3} and {1, 2, 3} are different. | |||
For the same reason, the order in which the elements are listed does not matter. The sets {1, 2, 3} and {3, 2, 1} have the same elements and thus these two sets are equal. However, there are many context in which we want to consider structures that have elements in a certain order and these elements may be the same. Such a structure is called a [[tuple]] or a [[sequence]]. The tuple containing the elements 1, 2 and 3 (in that order) is different from the tuple containing the elements 3, 2 and 1. These tuples are denotes (1, 2, 3) and (3, 2, 1) respectively, with round brackets (or angle brackets) instead of curly brackets to emphasize the difference between tuples and sets. | |||
Despite the intuitive definition, a set is usually not defined formally in terms of other mathematical objects; rather it is | Despite the intuitive definition, a set is usually not defined formally in terms of other mathematical objects; rather it is defined by the laws (called [[axiom]]s) that is satisfies. For instance, one commonly requires that no set may be an element of itself. Because sets are defined by themselves, they are fundamental structures in mathematics and [[logic]]. Mathematicians have found ways to define many mathematical objects, such as the real numbers, in terms of sets. | ||
The number of elements that a set contains does not have to be [[finite]]. Sets that contain a finite number of elements are called finite sets. Sets that contain an infinite number of elements are called infinite sets. The number of elements that a finite set contains is called that set's [[cardinality]]. The concept of cardinality can also be applied to infinite sets, though the concept is less intuitive, and relies upon [[bijection|bijections]] between sets. | The number of elements that a set contains does not have to be [[finite]]. Sets that contain a finite number of elements are called finite sets. Sets that contain an infinite number of elements are called infinite sets. The number of elements that a finite set contains is called that set's [[cardinality]]. The concept of cardinality can also be applied to infinite sets, though the concept is less intuitive, and relies upon [[bijection|bijections]] between sets. | ||
==Notation== | ==Notation== | ||
Some sets can be denoted by a list of objects separated with commas, enclosed with curly brackets. | |||
Some sets can be denoted by a list of objects separated with commas, enclosed with curly brackets. As mentioned before, {1, 2, 3} is the set of the numbers 1, 2, and 3. We say that 1, 2, and 3 are its ''members''. | |||
There are many other ways to write out sets. For example, | There are many other ways to write out sets. For example, |
Revision as of 08:21, 2 August 2008
Informally, a set is thought of as any collection of distinct elements. Sets and their formal definition are defined in a branch of mathematics known as set theory.
Introduction
The basic property of a set is that it contains elements. For instance, we can talk about the set that has as its elements the numbers 1, 2 and 3. This set is denoted {1, 2, 3}.
A set is solely determined by its elements (this is called extensionality). In particular, a set cannot contain an element twice. The set {1, 2, 2, 3} contains the elements 1, 2 and 3 and is thus the same as the set {1, 2, 3}. This is the difference between sets and multisets; considered as multisets, {1, 2, 2, 3} and {1, 2, 3} are different.
For the same reason, the order in which the elements are listed does not matter. The sets {1, 2, 3} and {3, 2, 1} have the same elements and thus these two sets are equal. However, there are many context in which we want to consider structures that have elements in a certain order and these elements may be the same. Such a structure is called a tuple or a sequence. The tuple containing the elements 1, 2 and 3 (in that order) is different from the tuple containing the elements 3, 2 and 1. These tuples are denotes (1, 2, 3) and (3, 2, 1) respectively, with round brackets (or angle brackets) instead of curly brackets to emphasize the difference between tuples and sets.
Despite the intuitive definition, a set is usually not defined formally in terms of other mathematical objects; rather it is defined by the laws (called axioms) that is satisfies. For instance, one commonly requires that no set may be an element of itself. Because sets are defined by themselves, they are fundamental structures in mathematics and logic. Mathematicians have found ways to define many mathematical objects, such as the real numbers, in terms of sets.
The number of elements that a set contains does not have to be finite. Sets that contain a finite number of elements are called finite sets. Sets that contain an infinite number of elements are called infinite sets. The number of elements that a finite set contains is called that set's cardinality. The concept of cardinality can also be applied to infinite sets, though the concept is less intuitive, and relies upon bijections between sets.
Notation
Some sets can be denoted by a list of objects separated with commas, enclosed with curly brackets. As mentioned before, {1, 2, 3} is the set of the numbers 1, 2, and 3. We say that 1, 2, and 3 are its members.
There are many other ways to write out sets. For example,
- A = {x | 1 < x < 10, x is a natural number}
can be read as follows: A is the set of all x, where x is between 1 and 10, and x is a natural number. A could also be written as:
- A = {2, 3, 4, 5, 6, 7, 8, 9}
Membership in a set is expressed with the ∈ symbol. To say that the set A contains the 2 as an element (or that 2 is an element of A), we write
- 2 ∈ A
The cardinality of a set is expressed by placing bars around the name of the set. For example, one would express the cardinality of the above set as such:
- |A| = 8
Some special sets
Some sets that are ubiquitous in the mathematical literature have special symbols:
- , the empty set, sometimes written {}.
- , the set of natural numbers
- , the set of integers
- , the set of rational numbers
- , the set of real numbers
Among other such well known sets are the complex numbers, quaternions, octonions and the hamiltonian integers.
Some examples of sets
- The set consisting of all tuples (a,b), where a is any real number and ditto for b. This set is known as x or 2.
- The three element set {Red, Yellow, Green}.
- The set consisting of the two elements Brake, Accelerate.
- The set consisting of all tuples (a,b) where a is any element in the set {Red, Yellow, Green} and b is any element in the set {Brake, Accelerate}.
- The set of all functions from the set {Red, Yellow, Green} to the set {Brake, Accelerate}.