Countable set: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Aleksander Stos
m (Enumerability moved to Countable set: As suggested on talk; added the noun "set", though -- this seems to be what is seen most often)
imported>Subpagination Bot
m (Add {{subpages}} and remove any categories (details))
Line 1: Line 1:
{{subpages}}
In [[mathematics]], a [[set]] X is said to be '''enumerable''' or '''countable''' if there exists a [[one-to-one]] [[map|mapping]] from the set of [[natural number]]s [[onto]] X.  By the definition, an enumerable set has the same [[cardinality]] as  the set of natural numbers.
In [[mathematics]], a [[set]] X is said to be '''enumerable''' or '''countable''' if there exists a [[one-to-one]] [[map|mapping]] from the set of [[natural number]]s [[onto]] X.  By the definition, an enumerable set has the same [[cardinality]] as  the set of natural numbers.


Line 83: Line 85:
* [[rational number|The set of rational numbers, Q]]
* [[rational number|The set of rational numbers, Q]]
* [[real number|The set of real numbers, R]]
* [[real number|The set of real numbers, R]]
[[Category:Mathematics Workgroup]] [[Category: CZ_Live]]

Revision as of 06:38, 26 September 2007

This article has a Citable Version.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article has an approved citable version (see its Citable Version subpage). While we have done conscientious work, we cannot guarantee that this Main Article, or its citable version, is wholly free of mistakes. By helping to improve this editable Main Article, you will help the process of generating a new, improved citable version.

In mathematics, a set X is said to be enumerable or countable if there exists a one-to-one mapping from the set of natural numbers onto X. By the definition, an enumerable set has the same cardinality as the set of natural numbers.

Enumerable sets are subject to many useful properties. Inductive proofs rely upon enumeration of induction variables.

Examples of enumerable sets

The set of integers is enumerable. Indeed, the function

is a bijection between the natural numbers and the integers:

n 0 1 2 3 4 5
f(n) 0 -1 1 -2 2 -3

The set of rational numbers is an enumerable set. Envision a table which contains all rational numbers (below). One can make a function that dovetails back and forth across the entire area of the table. This function enumerates all rational numbers.

Table of all rational numbers
0 1 2
1
2
3


The union of the set of integers with any finite set is enumerable. For instance, given the finite set

with cardinality n, this function will enumerate all elements of :

Counterexamples

The set of real numbers is not enumerable, which we will prove by contraction. Suppose you had an infinitely long list of all real numbers (below), in no particular order, expressed in decimal notation. This table, itself, is an enumeration function. We demonstrate the absurdity of such a list by finding a number which is not in the list.

Enumeration of all real numbers
Order Real Number
0 0.32847...
1 0.48284...
2 0.89438...
3 0.00154...
4 0.32425...
... ...

Specifically, we construct a number which differs from each real number by at least one digit, using this procedure: If the ith digit after the decimal place in the ith number in the list is a five, then our constructed number will have a four in the ith place, otherwise a five. From our example list, we would construct the number 0.55544... By construction, this number is a real number, but not in our list. As a result, the enumeration function is not onto.

See also