Geography: Difference between revisions
imported>Ian Cundell (starter, with an attempt at a less repetivie intro than the WP version.) |
mNo edit summary |
||
(50 intermediate revisions by 15 users not shown) | |||
Line 1: | Line 1: | ||
'''Geography''' (from the [[Greek language|Greek]] words '''[[Gaia (mythology)|Ge]]''' (''γη'') or '''Gaea''' (''γαια''), both meaning '''"Earth"''', and '''graphein''' (''γραφειν'') meaning '''"to describe"''' or "to write"''or "to map")'' is the study of the surface of the Earth and the activities of humanity upon it.<ref> | {{subpages}} | ||
'''Geography''' (from the [[Greek language|Greek]] words '''[[Gaia (mythology)|Ge]]''' (''γη'') or '''Gaea''' (''γαια''), both meaning '''"Earth"''', and '''graphein''' (''γραφειν'') meaning '''"to describe"''' or "to write"''or "to map")'' is the study of the surface of the Earth and the activities of humanity upon it.<ref>[http://dictionary.reference.com/browse/geography The American Heritage Dictionary of the English Language, Fourth Edition, Houghton Mifflin Company] </ref> The four historical traditions in geographical research are the [[spatial analysis]] of natural and human phenomena (geography as a study of distribution), area studies (places and regions), study of man-land relationship, and research in [[earth sciences]]. <ref>{{cite journal |last=Pattison |first=W.D. |year=1990 |title=The Four Traditions of Geography |journal=Journal of Geography |volume=89 |issue=5 |pages=pp. 202-6 |url=http://www.geog.ucsb.edu/~kclarke/G200B/four_20traditions_20of_20geography.pdf |id={{ISSN|0022-1341}} }} Reprint of a 1964 article.</ref> | |||
Historically, the distinction between physical and human geography has been a source of tension within the discipline. Some academic systems recognise a strong division between physical geography and human geography. Other systems seek to position geography as a meeting point for earth sciences and social science, where modern geography is synthesising. Whichever route is followed, the history of geography shows a clear progression from being essentially descriptive in character to essentially analytical. | Historically, the distinction between physical and human geography has been a source of tension within the discipline. Some academic systems recognise a strong division between physical geography and human geography. Other systems seek to position geography as a meeting point for earth sciences and social science, where modern geography is synthesising. Whichever route is followed, the history of geography shows a clear progression from being essentially descriptive in character to essentially analytical. | ||
Line 5: | Line 6: | ||
==Introduction== | ==Introduction== | ||
{{Image|Physical world.jpg|right|200px|Map of the Earth}} | |||
Historically, geography was closely associated with eras of exploration and, as such, [[geographers]] have been seen as synonymous with [[cartography|cartographers]] and people who study place names: so-called "capes and bays" geography. Most geographers are trained in at least the basics of cartography, but geographers study the [[spatial]] and [[temporal]] distribution of phenomena, processes and feature as well as the interaction of [[humans]] and their [[Natural environment|environment]].<ref | Historically, geography was closely associated with eras of exploration and, as such, [[geographers]] have been seen as synonymous with [[cartography|cartographers]] and people who study place names: so-called "capes and bays" geography. Most geographers are trained in at least the basics of cartography, but geographers study the [[spatial]] and [[temporal]] distribution of phenomena, processes and feature as well as the interaction of [[humans]] and their [[Natural environment|environment]].<ref> [http://webhost.bridgew.edu/jhayesboh/environmentalgeography.htm What is Environmental Geography, Anyway?] </ref> By the mid-19th Century those practising geography were making this explicit: | ||
''Mere names of places...are not geography...To know by heart a whole gazetteer full of them would not, in itself, constitute anyone a [[geographer]]. Geography has higher aims than this: it seeks to classify phenomena (alike of the natural and of the political world, in so far as it treats of the latter), to compare, to generalize, to ascend from effects to causes, and, in doing so, to trace out the great laws of nature and to mark their influences upon man. This is 'a description of the world'—that is Geography. In a word Geography is a Science—a thing not of mere names but of argument and reason, of cause and effect.'' [[William Hughes (professor)|William Hughes]] 1863<ref>[[William Hughes (professor)|Hughes, William]]. (1863). ''The Study of Geography''. Lecture delivered at King's College, London. Quoted in {{cite book |last=Baker |first=J.N.L |year=1963 |title=The History of Geography |publisher=Basil Blackwell |location=Oxford |pages=p. 66}}</ref> | <blockquote>''"Mere names of places...are not geography...To know by heart a whole gazetteer full of them would not, in itself, constitute anyone a [[geographer]]. Geography has higher aims than this: it seeks to classify phenomena (alike of the natural and of the political world, in so far as it treats of the latter), to compare, to generalize, to ascend from effects to causes, and, in doing so, to trace out the great laws of nature and to mark their influences upon man. This is 'a description of the world'—that is Geography. In a word Geography is a Science—a thing not of mere names but of argument and reason, of cause and effect."'' [[William Hughes (professor)|William Hughes]] 1863<ref>[[William Hughes (professor)|Hughes, William]]. (1863). ''The Study of Geography''. Lecture delivered at King's College, London. Quoted in {{cite book |last=Baker |first=J.N.L |year=1963 |title=The History of Geography |publisher=Basil Blackwell |location=Oxford |pages=p. 66}}</ref></blockquote> | ||
[[Human geography]] focuses largely on the built environment and how space is created, viewed and managed by humans as well as the influence humans have on the space they occupy. [[Physical geography]] examines the natural environment and how the [[climate]], [[vegetation]] & life, [[soil]], [[water]] and [[landforms]] | [[Human geography]] focuses largely on the [[built environment]] and how space is created, viewed and managed by humans as well as the influence humans have on the space they occupy. [[Physical geography]] examines the natural environment and how the [[climate]], [[vegetation]] & life, [[soil]], [[water]] and [[landforms]] are produced and interact.<ref>http://www.aag.org/Careers/What_is_geog.html What is geography?</ref> [[Environmental geography]] seeks to combine physical and human geography and looks at the interactions between the environment and humans. | ||
==History of geography== | ==History of geography== | ||
Line 16: | Line 17: | ||
:''See main article: [[History of geography]] | :''See main article: [[History of geography]] | ||
[[ | The foundations of geography can be traced to the ancient cultures, such as the [[ancient Greece|Greeks]], who were the first to explore geography as both [[art]] and [[science]], through [[History of cartography|Cartography]], [[Greek philosophy|Philosophy]], and [[Ancient Greek literature|Literature]], or through [[History of mathematics|Mathematics]]. Th earliest known debates about the size and shape of the Earth occurred there. [[Anaxagoras]] was able to demonstrate that the profile of the Earth was circular by explaining [[eclipse]]s. although he believed that the Earth was a flat disk. One of the first estimates of the radius of the Earth was made by [[Eratosthenes]].<ref>{{cite book | author=Jean-Louis and Monique Tassoul | title=A Concise History of Solar and Stellar Physics | publisher=Princeton University Press | location=London | year=1920 }}</ref> | ||
The | The first rigorous system of latitude and longitude is credited to [[Hipparchus]], using a [[sexagesimal]] system derived from [[Babylonian mathematics]]. The parallels and meridians were sub-divided into 360°, with each degree further subdivided 60′ ([[minutes]]). To measure longitude, he suggested using eclipses to determine the relative difference in time.<ref>{{cite web | year = 2001 | url = http://astrogeology.usgs.gov/HotTopics/index.php?/archives/147-Names-for-the-Columbia-astronauts-provisionally-approved.html | title = Hipparcos of Rhodes | publisher = Technology Museum of Thessaloniki|accessdate = 2006-10-16 }}</ref> Extensive mapping by the [[Roman Empire|Romans]] would later provide a high level of information for [[Ptolemy]] to construct detailed [[atlas|atlases]]. He extended the work of [[Hipparchus]], using a grid system on his maps and adopting a length of 56.5 [[mile]]s for a degree.<ref>{{cite web | last = Sullivan | first = Dan | year = 2000 | url = http://www.math.rutgers.edu/~cherlin/History/Papers2000/sullivan.html | title = Mapmaking and its History | publisher = Rutgers University | accessdate = 2006-10-16 }}</ref> | ||
The | The fall of the [[Roman empire]] saw shift in the evolution of geography from [[Europe]] to the [[Islamic]] world. Scholars such as [[Idrisi]] (produced detailed maps), [[Ibn Batutta]], and [[Ibn Khaldun]] provided detailed accounts of their [[Hajj]]. Further, Islamic scholars translated and [[interpreted]] the earlier works of the [[Ancient Rome|Romans]] and [[ancient Greece|Greeks]] and established the [[House of Wisdom]] in [[Baghdad]] for this purpose.<ref>http://www.islamicity.com/education/ihame/default.asp?Destination=/education/ihame/20.asp</ref> | ||
The [[Age of discovery]] and [[imperialism]] during the [[16th century|16th]] and [[17th century|17th centuries]], with many new lands discovered, and accounts by explorers such as [[Christopher Columbus]], [[Marco Polo]] and [[James Cook]], revived a desire for accurate geographic detail. | |||
The [[18th century|18th]] and [[19th century|19th centuries]] were the times when geography began to be recognized as a discrete academic discipline and became part of a typical [[university]] curriculum in [[Europe]] (especially [[Paris]] and [[Berlin]]). The development of many geographic societies also occurred during the 19th century with the foundations of the [[Société de Géographie]] in 1821,<ref>{{cite web | |||
The [[18th century|18th]] and [[19th century|19th centuries]] were the times when geography | |||
| url = http://www.socgeo.org/index.html | | url = http://www.socgeo.org/index.html | ||
| title = Société de Géographie, Paris, France | | title = Société de Géographie, Paris, France | ||
| accessdate = 2007-01-15 | | accessdate = 2007-01-15 | ||
| language = French | | language = French | ||
}}</ref> the [[Royal Geographical Society]] in | }}</ref> the [[Royal Geographical Society]] in 1830,<ref>{{cite web | ||
| url = http://www.rgs.org/AboutUs/about+us.htm | | url = http://www.rgs.org/AboutUs/about+us.htm | ||
| title = About Us | | title = About Us | ||
| publisher = Royal Geographical Society | | publisher = Royal Geographical Society | ||
| accessdate = 2007-01-15 | | accessdate = 2007-01-15 | ||
}}</ref> [[Russian Geographical Society]] in | }}</ref> [[Russian Geographical Society]] in 1845<ref>http://www.rgo.org.ru/</ref> and the [[National Geographic Society]] in1888.<ref>http://www.nationalgeographic.com/index.html</ref> The influence of [[Immanuel Kant]], [[Alexander von Humbolt]], [[Carl Ritter]] and [[Paul Vidal de la Blache]] can be seen as a major turning point in geography from a descriptive to an analytical subject. | ||
In the West during the [[20th century]], geography went through four major phases: [[environmental determinism]], [[regional geography]], the [[quantitative revolution]], and [[critical geography]], reflecting tensions with the discipline regarding it proper focus and approach. Interdisciplinary links between geography and [[geology]], [[botany]],[[economics]], [[sociology]] and [[demographics]] mean that geography remains synthetic in nature, but the evolution of the discipline has follow rather different patterns in North America than in Europe. | |||
Advances in technology such as computers, have led to the development of [[geomatics]] and new practices such as participant observation and geostatistics being incorporated into geography's portfolio of tools. | |||
==Branches of geography== | ==Branches of geography== | ||
[[Image:Land ocean ice cloud 1024.jpg|thumb|256px|Physical Map of the World]] | |||
=== Physical geography === | === Physical geography === | ||
[[Physical geography]] | [[Physical geography]] focuses on geography as an [[Earth science]]. It aims to understand the physical features of the Earth, its [[lithosphere]], [[hydrosphere]], [[Earth's atmosphere|atmosphere]], [[pedosphere]] and global [[flora (plants)|flora]] and [[fauna (animals)|fauna]] patterns ([[biosphere]]). Physical Geography can be divided into the following broad categories: | ||
* [[Biogeography]] | * [[Biogeography]] | ||
** [[Landscape ecology]] | |||
** [[Pedology]] | |||
* [[Climatology]] and [[paleoclimatology]] | * [[Climatology]] and [[paleoclimatology]] | ||
* [[Geodesy]] | * [[Geodesy]] | ||
* [[Geomorphology]] | * [[Geomorphology]] | ||
* [[Glaciology]] | ** [[Coastal geography|Coastal/Marine studies]] | ||
** [[Glaciology]] | |||
* [[Hydrology]]/[[Hydrography]] | ** [[Hydrology]]/[[Hydrography]] | ||
** [[Limnology]] | *** [[Limnology]] | ||
* [[ | ** [[Palaeogeography]] | ||
* [[Oceanography]] | * [[Oceanography]] | ||
=== Human geography === | === Human geography === | ||
[[Human geography]] | [[Image:World population density map.PNG|300px|thumb|Population density by country, 2006]] | ||
[[Human geography]] focuses on the study of patterns and processes that shape human interaction with various environments. It encompasses, [[political]], [[cultural]], [[social]], and [[economics|economic]] aspects. Human geography can be divided into many broad categories, such as: | |||
* [[Economic geography]] | * [[Economic geography]] | ||
* | ** [[Development geography]] | ||
* [[Development geography]] | ** [[Tourism geography]] | ||
* | ** [[Transportation geography]] | ||
* [[ | |||
* | * [[Historical geography]] | ||
* [[ | |||
* [[ | |||
* [[Political geography]], including [[Geopolitics]]* | * [[Political geography]], including [[Geopolitics]]* | ||
* | ** [[Military geography]] | ||
* [[ | |||
* [[Regional geography]] | * [[Regional geography]] | ||
* [[ | * [[Social geography]] | ||
** [[Behavioral geography]] | |||
** [[Cultural region|Cultural geography]] | |||
** [[Feminist geography]] | |||
** [[Geosophy]] | |||
** [[Population geography]] or [[Demography]]* | |||
* [[Strategic geography]] | * [[Strategic geography]] | ||
* [[ | * [[Urban geography]] | ||
:<sup>*</sup> –<small> Distinction between these fields a prone to change. The above list should not be considered definitive.</small> | |||
:<sup>*</sup> –<small> Distinction between these fields | |||
=== Environmental geography === | === Environmental geography === | ||
[[Environmental geography]] | [[Environmental geography]] studies the spatial aspects of interactions between humans and the natural world. It requires an understanding of the traditional aspects of physical and human geography, as well as the ways in which human societies conceptualize the environment. | ||
Environmental geography has emerged as a bridge between human and physical geography as a result of the increasing specialisation of the two sub-fields. Furthermore, as human relationship with the environment has changed as a result of [[globalisation]] and [[technological change]] a new approach | Environmental geography has emerged as a bridge between human and physical geography as a result of the increasing specialisation of the two sub-fields. Furthermore, as human relationship with the environment has changed as a result of [[globalisation]] and [[technological change]] a new approach seeks to understand the changing and dynamic relationship. Examples of areas of research in environmental geography include [[disaster management]], [[environmental management]], [[sustainability]] and [[political ecology]]. | ||
===Geomatics=== | ===Geomatics=== | ||
[[Image:Geabios3d.jpg|thumb|right|DEM model]] | [[Image:Geabios3d.jpg|thumb|right|DEM model]] | ||
[[Geomatics]] | [[Geomatics]] (also known as [[Geographic Information Science]]) has emerged since the quantitative revolution in geography in the mid 1950s. Geomatics involves the use of traditional spatial techniques used in cartography and terrain analysis and their application to computers. Geomatics has become a widespread field with many other disciplines using techniques such as GIS and remote sensing. Geomatics has also lead to a revitalisation of some geography departments especially in Northern America where the subject had a declining status during the 1950s. | ||
Geomatics encompasses a large area of fields involved with [[spatial analysis]], such as [[Cartography]], [[Geographic Information System|Geographic information systems (GIS)]], [[Remote sensing]] and [[GPS]]. | |||
===[[Regional geography]]=== | |||
[[Regional geography]] is a branch of geography that studies the regions of all sizes across the [[Earth]]. It has a prevailing [[descriptive]] character. The main aim is to understand or define the uniqueness or character of a particular region which consists of natural as well as human elements. Attention is paid also to [[regionalization]] which covers the proper techniques of space delimitation into regions. | [[Regional geography]] is a branch of geography that studies the regions of all sizes across the [[Earth]]. It has a prevailing [[descriptive]] character. The main aim is to understand or define the uniqueness or character of a particular region which consists of natural as well as human elements. Attention is paid also to [[regionalization]] which covers the proper techniques of space delimitation into regions. | ||
Regional geography is also considered as a certain approach to study in geographical sciences (similar to [[quantitative revolution|quantitative]] or [[critical geography|critical geographies]], for more information see [[History of geography]]). | Regional geography is also considered as a certain approach to study in geographical sciences (similar to [[quantitative revolution|quantitative]] or [[critical geography|critical geographies]], for more information see [[History of geography]]). | ||
== Geographical techniques == | == Geographical techniques == | ||
As spatial interrelationships are | As spatial interrelationships are fundamental to geography, [[map]]s are a key tool. Classical [[cartography]] has been joined by a more modern approach to geographical analysis, computer-based [[Geographic Information System|geographic information systems]] (GIS). | ||
Geographers use four interrelated approaches: | |||
* Systematic - Groups geographical knowledge into categories that can be explored globally. | * Systematic - Groups geographical knowledge into categories that can be explored globally. | ||
* Regional - Examines systematic relationships between categories for a specific region or location on the planet. | * Regional - Examines systematic relationships between categories for a specific region or location on the planet. | ||
Line 126: | Line 112: | ||
* Analytical - Asks ''why'' we find features and populations in a specific geographic area. | * Analytical - Asks ''why'' we find features and populations in a specific geographic area. | ||
===Cartography=== | Techniques used by geographers include, but are not limited to: | ||
===[[Cartography]]=== | |||
Cartography studies the representation of the Earth's surface with abstract symbols (map making). Although other subdisciplines of geography rely on maps for presenting their analyses, the actual making of maps is abstract enough to be regarded separately. Cartography has grown from a collection of drafting techniques into an actual science. | Cartography studies the representation of the Earth's surface with abstract symbols (map making). Although other subdisciplines of geography rely on maps for presenting their analyses, the actual making of maps is abstract enough to be regarded separately. Cartography has grown from a collection of drafting techniques into an actual science. | ||
Cartographers must learn [[cognitive psychology]] and ergonomics to understand which symbols convey information about the Earth most effectively, and [[behavioral psychology]] to induce the readers of their maps to act on the information. They must learn [[geodesy]] and fairly advanced [[mathematics]] to understand how the shape of the Earth affects the distortion of map symbols projected onto a flat surface for viewing. It can be said, without much controversy, that cartography is the seed from which the larger field of geography grew. Most geographers will cite a childhood fascination with maps as an early sign they would end up in the field. | Cartographers must learn [[cognitive psychology]] and ergonomics to understand which symbols convey information about the Earth most effectively, and [[behavioral psychology]] to induce the readers of their maps to act on the information. They must learn [[geodesy]] and fairly advanced [[mathematics]] to understand how the shape of the Earth affects the distortion of map symbols projected onto a flat surface for viewing. It can be said, without much controversy, that cartography is the seed from which the larger field of geography grew. Most geographers will cite a childhood fascination with maps as an early sign they would end up in the field. | ||
===Geographic | ===[[Geographic Information System]]s=== | ||
Geographic information systems (GIS) deal with the storage of information about the Earth for automatic retrieval by a computer, in an accurate manner appropriate to the information's purpose. In addition to all of the other subdisciplines of geography, GIS specialists must understand [[computer science]] and [[database]] systems. GIS has revolutionized the field of cartography; nearly all mapmaking is now done with the assistance of some form of GIS software. GIS also refers to the science of using GIS software and GIS techniques to represent, analyze and predict spatial relationships. In this context, GIS stands for Geographic Information Science. | Geographic information systems (GIS) deal with the storage of information about the Earth for automatic retrieval by a computer, in an accurate manner appropriate to the information's purpose. In addition to all of the other subdisciplines of geography, GIS specialists must understand [[computer science]] and [[database]] systems. GIS has revolutionized the field of cartography; nearly all mapmaking is now done with the assistance of some form of GIS software. GIS also refers to the science of using GIS software and GIS techniques to represent, analyze and predict spatial relationships. In this context, GIS stands for Geographic Information Science. | ||
===Remote sensing=== | ===[[Remote sensing]]=== | ||
Remote sensing can be defined as the art and science of obtaining information about Earth features from measurements made at a distance. Remotely sensed data comes in many forms such as [[satellite imagery]], [[aerial photography]] and data obtained from hand-held sensors. Geographers increasingly use remotely sensed data to obtain information about the Earth's land surface, ocean and atmosphere because it: a) supplies objective information at a variety of spatial scales (local to global), b) provides a synoptic view of the area of interest, c) allows access to distant and/or inaccessible sites, d) provides spectral information outside the visible portion of the electromagnetic spectrum, and e) facilitates studies of how features/areas change over time. Remotely sensed data may be analyzed either independently of, or in conjunction with, other digital data layers (e.g., in a Geographic Information System). | Remote sensing can be defined as the art and science of obtaining information about Earth features from measurements made at a distance. Remotely sensed data comes in many forms such as [[satellite imagery]], [[aerial photography]] and data obtained from hand-held sensors. Geographers increasingly use remotely sensed data to obtain information about the Earth's land surface, ocean and atmosphere because it: a) supplies objective information at a variety of spatial scales (local to global), b) provides a synoptic view of the area of interest, c) allows access to distant and/or inaccessible sites, d) provides spectral information outside the visible portion of the electromagnetic spectrum, and e) facilitates studies of how features/areas change over time. Remotely sensed data may be analyzed either independently of, or in conjunction with, other digital data layers (e.g., in a Geographic Information System). | ||
===[[Geostatistics]]=== | |||
[[Geostatistics]] deal with quantitative data analysis, specifically the application of statistical methodology to the exploration of geographic phenomena. Geostatistics is used extensively in a variety of fields including: [[hydrology]], [[geology]], [[petroleum]] exploration, weather analysis, [[urban planning]], [[logistics]], and [[epidemiology]]. The mathematical basis for geostatistics derives from [[cluster analysis]], [[discriminant analysis]], and [[non-parametric statistics|non-parametric statistical tests]], and a variety of other subjects. Applications of geostatistics rely heavily on [[Geographic Information System]]s, particularly for the [[interpolation]] (estimate) of unmeasured points. | |||
=== | ===[[Ethnography]]=== | ||
[[ | |||
Geographic qualitative methods, or ethnographical; research techniques, are used by human geographers. In [[cultural geography]] there is a tradition of employing [[qualitative research]] techniques also used in [[anthropology]] and [[sociology]]. [[Participant observation]] and in-depth interviews provide human geographers with qualitative data. | Geographic qualitative methods, or ethnographical; research techniques, are used by human geographers. In [[cultural geography]] there is a tradition of employing [[qualitative research]] techniques also used in [[anthropology]] and [[sociology]]. [[Participant observation]] and in-depth interviews provide human geographers with qualitative data. | ||
==Selective list of notable geographers== | ==Selective list of notable geographers== | ||
[[Image:The_Geographer.jpg|thumb|right|200px|''The Geographer'' by [[Johannes Vermeer]]]] | [[Image:The_Geographer.jpg|thumb|right|200px|''The Geographer'' by [[Johannes Vermeer]]]] | ||
*[[Eratosthenes]] (276BC - 194BC) - calculated the size of the Earth | *[[Eratosthenes]] (276BC - 194BC) - calculated the size of the Earth | ||
Line 164: | Line 145: | ||
*[[Walter Christaller]] (1893-1969) - human geographer and inventor of Central Place Theory | *[[Walter Christaller]] (1893-1969) - human geographer and inventor of Central Place Theory | ||
*[[David Harvey (geographer)|David Harvey]] (1935-) - Marxist geographer and author on theories on space and urban geography. | *[[David Harvey (geographer)|David Harvey]] (1935-) - Marxist geographer and author on theories on space and urban geography. | ||
*[[Arnold Henry Guyot]] (1807-1884) - noted the structure of glaciers and advanced | *[[Arnold Henry Guyot]] (1807-1884) - noted the structure of glaciers and advanced understanding in glacier motion especially fast ice flow | ||
*[[Nigel Thrift]] (1949-) - originator of non-representational theory | *[[Nigel Thrift]] (1949-) - originator of non-representational theory | ||
*[[Michael Frank Goodchild]] (1944-) - prominent GIS scholar and winner of the RGS founder's medal in 2003 | *[[Michael Frank Goodchild]] (1944-) - prominent GIS scholar and winner of the RGS founder's medal in 2003 and the Prix Vautrin Lud (the Nobel Prize of Geography) in 2007 | ||
==References== | ==References== | ||
{{reflist}} | |||
== | == Related fields == | ||
* [[ | *[[Urban planning]], [[regional planning]] and [[spatial planning]]: use the science of geography to assist in determining how to develop (or not develop) the land to meet particular criteria, such as safety, beauty, economic opportunities, the preservation of the built or natural heritage, and so on. The planning of towns, cities and rural areas may be seen as applied geography. | ||
*[[Regional science]]: In the [[1950s]] the regional science movement led by Walter Isard arose, to provide a more quantitative and analytical base to geographical questions, in contrast to the descriptive tendencies of traditional geography programs. Regional science comprises the body of knowledge in which the spatial dimension plays a fundamental role, such as [[regional economics]], [[resource management]], [[location theory]], [[urban planning|urban]] and [[regional planning]], [[transport]] and [[communication]], [[human geography]], population distribution, [[landscape ecology]], and environmental quality. | |||
[[Category: | *[[Planetology|Interplanetary Sciences]]: While the discipline of geography is normally concerned with the [[Earth]], the term can also be informally used to describe the study of other worlds, such as the [[planets]] of the [[solar system]], and even beyond. The study of systems larger than the earth itself usually forms part of [[Astronomy]] or [[Cosmology]]. The study of other planets is usually called [[planetology]]. Alternative terms such as [[areology]] (the study of Mars) have been proposed but are not widely used.[[Category:Suggestion Bot Tag]] |
Latest revision as of 06:00, 21 August 2024
Geography (from the Greek words Ge (γη) or Gaea (γαια), both meaning "Earth", and graphein (γραφειν) meaning "to describe" or "to write"or "to map") is the study of the surface of the Earth and the activities of humanity upon it.[1] The four historical traditions in geographical research are the spatial analysis of natural and human phenomena (geography as a study of distribution), area studies (places and regions), study of man-land relationship, and research in earth sciences. [2]
Historically, the distinction between physical and human geography has been a source of tension within the discipline. Some academic systems recognise a strong division between physical geography and human geography. Other systems seek to position geography as a meeting point for earth sciences and social science, where modern geography is synthesising. Whichever route is followed, the history of geography shows a clear progression from being essentially descriptive in character to essentially analytical.
Introduction
Historically, geography was closely associated with eras of exploration and, as such, geographers have been seen as synonymous with cartographers and people who study place names: so-called "capes and bays" geography. Most geographers are trained in at least the basics of cartography, but geographers study the spatial and temporal distribution of phenomena, processes and feature as well as the interaction of humans and their environment.[3] By the mid-19th Century those practising geography were making this explicit:
"Mere names of places...are not geography...To know by heart a whole gazetteer full of them would not, in itself, constitute anyone a geographer. Geography has higher aims than this: it seeks to classify phenomena (alike of the natural and of the political world, in so far as it treats of the latter), to compare, to generalize, to ascend from effects to causes, and, in doing so, to trace out the great laws of nature and to mark their influences upon man. This is 'a description of the world'—that is Geography. In a word Geography is a Science—a thing not of mere names but of argument and reason, of cause and effect." William Hughes 1863[4]
Human geography focuses largely on the built environment and how space is created, viewed and managed by humans as well as the influence humans have on the space they occupy. Physical geography examines the natural environment and how the climate, vegetation & life, soil, water and landforms are produced and interact.[5] Environmental geography seeks to combine physical and human geography and looks at the interactions between the environment and humans.
History of geography
- See main article: History of geography
The foundations of geography can be traced to the ancient cultures, such as the Greeks, who were the first to explore geography as both art and science, through Cartography, Philosophy, and Literature, or through Mathematics. Th earliest known debates about the size and shape of the Earth occurred there. Anaxagoras was able to demonstrate that the profile of the Earth was circular by explaining eclipses. although he believed that the Earth was a flat disk. One of the first estimates of the radius of the Earth was made by Eratosthenes.[6]
The first rigorous system of latitude and longitude is credited to Hipparchus, using a sexagesimal system derived from Babylonian mathematics. The parallels and meridians were sub-divided into 360°, with each degree further subdivided 60′ (minutes). To measure longitude, he suggested using eclipses to determine the relative difference in time.[7] Extensive mapping by the Romans would later provide a high level of information for Ptolemy to construct detailed atlases. He extended the work of Hipparchus, using a grid system on his maps and adopting a length of 56.5 miles for a degree.[8]
The fall of the Roman empire saw shift in the evolution of geography from Europe to the Islamic world. Scholars such as Idrisi (produced detailed maps), Ibn Batutta, and Ibn Khaldun provided detailed accounts of their Hajj. Further, Islamic scholars translated and interpreted the earlier works of the Romans and Greeks and established the House of Wisdom in Baghdad for this purpose.[9]
The Age of discovery and imperialism during the 16th and 17th centuries, with many new lands discovered, and accounts by explorers such as Christopher Columbus, Marco Polo and James Cook, revived a desire for accurate geographic detail.
The 18th and 19th centuries were the times when geography began to be recognized as a discrete academic discipline and became part of a typical university curriculum in Europe (especially Paris and Berlin). The development of many geographic societies also occurred during the 19th century with the foundations of the Société de Géographie in 1821,[10] the Royal Geographical Society in 1830,[11] Russian Geographical Society in 1845[12] and the National Geographic Society in1888.[13] The influence of Immanuel Kant, Alexander von Humbolt, Carl Ritter and Paul Vidal de la Blache can be seen as a major turning point in geography from a descriptive to an analytical subject.
In the West during the 20th century, geography went through four major phases: environmental determinism, regional geography, the quantitative revolution, and critical geography, reflecting tensions with the discipline regarding it proper focus and approach. Interdisciplinary links between geography and geology, botany,economics, sociology and demographics mean that geography remains synthetic in nature, but the evolution of the discipline has follow rather different patterns in North America than in Europe.
Advances in technology such as computers, have led to the development of geomatics and new practices such as participant observation and geostatistics being incorporated into geography's portfolio of tools.
Branches of geography
Physical geography
Physical geography focuses on geography as an Earth science. It aims to understand the physical features of the Earth, its lithosphere, hydrosphere, atmosphere, pedosphere and global flora and fauna patterns (biosphere). Physical Geography can be divided into the following broad categories:
Human geography
Human geography focuses on the study of patterns and processes that shape human interaction with various environments. It encompasses, political, cultural, social, and economic aspects. Human geography can be divided into many broad categories, such as:
- Historical geography
- Political geography, including Geopolitics*
- Regional geography
- Social geography
- Strategic geography
- Urban geography
- * – Distinction between these fields a prone to change. The above list should not be considered definitive.
Environmental geography
Environmental geography studies the spatial aspects of interactions between humans and the natural world. It requires an understanding of the traditional aspects of physical and human geography, as well as the ways in which human societies conceptualize the environment.
Environmental geography has emerged as a bridge between human and physical geography as a result of the increasing specialisation of the two sub-fields. Furthermore, as human relationship with the environment has changed as a result of globalisation and technological change a new approach seeks to understand the changing and dynamic relationship. Examples of areas of research in environmental geography include disaster management, environmental management, sustainability and political ecology.
Geomatics
Geomatics (also known as Geographic Information Science) has emerged since the quantitative revolution in geography in the mid 1950s. Geomatics involves the use of traditional spatial techniques used in cartography and terrain analysis and their application to computers. Geomatics has become a widespread field with many other disciplines using techniques such as GIS and remote sensing. Geomatics has also lead to a revitalisation of some geography departments especially in Northern America where the subject had a declining status during the 1950s.
Geomatics encompasses a large area of fields involved with spatial analysis, such as Cartography, Geographic information systems (GIS), Remote sensing and GPS.
Regional geography
Regional geography is a branch of geography that studies the regions of all sizes across the Earth. It has a prevailing descriptive character. The main aim is to understand or define the uniqueness or character of a particular region which consists of natural as well as human elements. Attention is paid also to regionalization which covers the proper techniques of space delimitation into regions.
Regional geography is also considered as a certain approach to study in geographical sciences (similar to quantitative or critical geographies, for more information see History of geography).
Geographical techniques
As spatial interrelationships are fundamental to geography, maps are a key tool. Classical cartography has been joined by a more modern approach to geographical analysis, computer-based geographic information systems (GIS).
Geographers use four interrelated approaches:
- Systematic - Groups geographical knowledge into categories that can be explored globally.
- Regional - Examines systematic relationships between categories for a specific region or location on the planet.
- Descriptive - Simply specifies the locations of features and populations.
- Analytical - Asks why we find features and populations in a specific geographic area.
Techniques used by geographers include, but are not limited to:
Cartography
Cartography studies the representation of the Earth's surface with abstract symbols (map making). Although other subdisciplines of geography rely on maps for presenting their analyses, the actual making of maps is abstract enough to be regarded separately. Cartography has grown from a collection of drafting techniques into an actual science.
Cartographers must learn cognitive psychology and ergonomics to understand which symbols convey information about the Earth most effectively, and behavioral psychology to induce the readers of their maps to act on the information. They must learn geodesy and fairly advanced mathematics to understand how the shape of the Earth affects the distortion of map symbols projected onto a flat surface for viewing. It can be said, without much controversy, that cartography is the seed from which the larger field of geography grew. Most geographers will cite a childhood fascination with maps as an early sign they would end up in the field.
Geographic Information Systems
Geographic information systems (GIS) deal with the storage of information about the Earth for automatic retrieval by a computer, in an accurate manner appropriate to the information's purpose. In addition to all of the other subdisciplines of geography, GIS specialists must understand computer science and database systems. GIS has revolutionized the field of cartography; nearly all mapmaking is now done with the assistance of some form of GIS software. GIS also refers to the science of using GIS software and GIS techniques to represent, analyze and predict spatial relationships. In this context, GIS stands for Geographic Information Science.
Remote sensing
Remote sensing can be defined as the art and science of obtaining information about Earth features from measurements made at a distance. Remotely sensed data comes in many forms such as satellite imagery, aerial photography and data obtained from hand-held sensors. Geographers increasingly use remotely sensed data to obtain information about the Earth's land surface, ocean and atmosphere because it: a) supplies objective information at a variety of spatial scales (local to global), b) provides a synoptic view of the area of interest, c) allows access to distant and/or inaccessible sites, d) provides spectral information outside the visible portion of the electromagnetic spectrum, and e) facilitates studies of how features/areas change over time. Remotely sensed data may be analyzed either independently of, or in conjunction with, other digital data layers (e.g., in a Geographic Information System).
Geostatistics
Geostatistics deal with quantitative data analysis, specifically the application of statistical methodology to the exploration of geographic phenomena. Geostatistics is used extensively in a variety of fields including: hydrology, geology, petroleum exploration, weather analysis, urban planning, logistics, and epidemiology. The mathematical basis for geostatistics derives from cluster analysis, discriminant analysis, and non-parametric statistical tests, and a variety of other subjects. Applications of geostatistics rely heavily on Geographic Information Systems, particularly for the interpolation (estimate) of unmeasured points.
Ethnography
Geographic qualitative methods, or ethnographical; research techniques, are used by human geographers. In cultural geography there is a tradition of employing qualitative research techniques also used in anthropology and sociology. Participant observation and in-depth interviews provide human geographers with qualitative data.
Selective list of notable geographers
- Eratosthenes (276BC - 194BC) - calculated the size of the Earth
- Ptolemy (c.90–c.168) - compiled Greek and Roman knowledge into the book Geographia
- Alexander Von Humboldt (1769–1859) - published the Kosmos and founder of the sub-field biogeography. Founder of modern geography
- Carl Ritter (1779-1859) - Occupied the first chair of geography at Berlin University, founder of modern geography
- William Morris Davis (1850-1934) - father of American geography and developer of the cycle of erosion
- Paul Vidal de la Blache (1845-1918) - founder of the French school of geopolitics and wrote the principles of human geography
- Walter Christaller (1893-1969) - human geographer and inventor of Central Place Theory
- David Harvey (1935-) - Marxist geographer and author on theories on space and urban geography.
- Arnold Henry Guyot (1807-1884) - noted the structure of glaciers and advanced understanding in glacier motion especially fast ice flow
- Nigel Thrift (1949-) - originator of non-representational theory
- Michael Frank Goodchild (1944-) - prominent GIS scholar and winner of the RGS founder's medal in 2003 and the Prix Vautrin Lud (the Nobel Prize of Geography) in 2007
References
- ↑ The American Heritage Dictionary of the English Language, Fourth Edition, Houghton Mifflin Company
- ↑ Pattison, W.D. (1990). "The Four Traditions of Geography". Journal of Geography 89 (5): pp. 202-6. Template:ISSN. Reprint of a 1964 article.
- ↑ What is Environmental Geography, Anyway?
- ↑ Hughes, William. (1863). The Study of Geography. Lecture delivered at King's College, London. Quoted in Baker, J.N.L (1963). The History of Geography. Oxford: Basil Blackwell, p. 66.
- ↑ http://www.aag.org/Careers/What_is_geog.html What is geography?
- ↑ Jean-Louis and Monique Tassoul (1920). A Concise History of Solar and Stellar Physics. London: Princeton University Press.
- ↑ Hipparcos of Rhodes. Technology Museum of Thessaloniki (2001). Retrieved on 2006-10-16.
- ↑ Sullivan, Dan (2000). Mapmaking and its History. Rutgers University. Retrieved on 2006-10-16.
- ↑ http://www.islamicity.com/education/ihame/default.asp?Destination=/education/ihame/20.asp
- ↑ Société de Géographie, Paris, France (French). Retrieved on 2007-01-15.
- ↑ About Us. Royal Geographical Society. Retrieved on 2007-01-15.
- ↑ http://www.rgo.org.ru/
- ↑ http://www.nationalgeographic.com/index.html
Related fields
- Urban planning, regional planning and spatial planning: use the science of geography to assist in determining how to develop (or not develop) the land to meet particular criteria, such as safety, beauty, economic opportunities, the preservation of the built or natural heritage, and so on. The planning of towns, cities and rural areas may be seen as applied geography.
- Regional science: In the 1950s the regional science movement led by Walter Isard arose, to provide a more quantitative and analytical base to geographical questions, in contrast to the descriptive tendencies of traditional geography programs. Regional science comprises the body of knowledge in which the spatial dimension plays a fundamental role, such as regional economics, resource management, location theory, urban and regional planning, transport and communication, human geography, population distribution, landscape ecology, and environmental quality.
- Interplanetary Sciences: While the discipline of geography is normally concerned with the Earth, the term can also be informally used to describe the study of other worlds, such as the planets of the solar system, and even beyond. The study of systems larger than the earth itself usually forms part of Astronomy or Cosmology. The study of other planets is usually called planetology. Alternative terms such as areology (the study of Mars) have been proposed but are not widely used.