Sulphur: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Caesar Schinas
m (Update image code)
mNo edit summary
 
(6 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{subpages}}
{{subpages}}
{{Elem_Infobox
{{Elem_Infobox
|background1=f2f2f2
|elName=Sulphur
|align=right
|eltrnCfg=1s<sup>2</sup>2s<sup>2</sup>2p<sup>6</sup>3s<sup>2</sup>3p<sup>4</sup>
|elementColor=ffffff
|elName=Sulfur
|eltrnCfg=1''s''<sup>2</sup>2''s''<sup>2</sup>2''p''<sup>6</sup>3''s''<sup>2</sup>3''p''<sup>4</sup>
|elgroup=16
|elgroup=16
|elperiod=3
|elperiod=3
Line 18: Line 15:
|hazard=
|hazard=
}}
}}
'''Sulphur''' (''aka'' '''sulfur''') is a [[Chemical elements|chemical element]], typically found as a yellowish crystalline [[Solid_(state_of_matter)|solid]] in its elemental form. It has the [[chemical symbol]] S, [[atomic number]] (number of [[protons]]) ''Z''&nbsp;=&nbsp;16, and a [[Atomic mass#Standard atomic weights of the elements|standard atomic weight]] of 32.065&nbsp;g/mol.


'''Sulfur''', or '''sulphur''', is a non-metallic [[chemical element]].
Sulphur is widely used in the manufacture of [[sulphuric acid]] (H<sub>2</sub>SO<sub>4</sub>} as well as various fertilisers. The vast majority of the 66,000,000 metric tons of sulphur produced worldwide in 2006 was by-product sulphur recovered from [[Petroleum refining processes|petroleum refining]] and [[Natural gas processing|natural gas processing plants]] by the [[Claus process]].<ref>[http://minerals.usgs.gov/minerals/pubs/commodity/sulphur/sulfumcs07.pdf Sulphur production report] by the [[United States Geological Survey]]</ref>
Sulfur has the symbol S and an [[Atomic mass|atomic weight]] of 32.065. It is a yellowish crystalline solid in its elemental form and it is an element essential for life.
 
The vast majority of the 66,000,000 metric tons of sulfur produced worldwide in 2006 was by-product sulfur recovered from [[Petroleum refining processes|petroleum refining]] and [[Natural gas processing|natural gas processing plants]] by the [[Claus process]].<ref>[http://minerals.usgs.gov/minerals/pubs/commodity/sulfur/sulfumcs07.pdf Sulfur production report] by the [[United States Geological Survey]]</ref>
 
Sulfur is widely used in the manufacture of [[sulfuric acid]] (H<sub>2</sub>SO<sub>4</sub>} and various fertilizers.


==Characteristics==
==Characteristics==
 
At room temperature, sulphur is a soft, bright-yellow solid. Elemental sulphur has only a faint odour, similar to that of [[matches]].   
At room temperature, sulfur is a soft, bright-yellow solid. Elemental sulfur has only a faint odor, similar to that of [[matches]].   
    
    
Sulfur burns with a blue flame that emits [[sulfur dioxide]], notable for its peculiar suffocating odor due to dissolving in the mucosa to form dilute [[sulfurous acid]].  
Sulphur burns with a blue flame that emits [[sulphur dioxide]], notable for its peculiar suffocating odour due to dissolving in the mucosa to form dilute [[sulphurous acid]].  


Sulfur itself is insoluble in water, but [[solubility|soluble]] in [[carbon disulfide]] and to a lesser extent in other non-polar organic solvents such as [[benzene]] and [[toluene]].  
Sulphur itself is insoluble in water, but [[solubility|soluble]] in [[carbon disulfide]] and to a lesser extent in other non-polar organic solvents such as [[benzene]] and [[toluene]].  


Common [[oxidation state]]s of sulfur include &minus;2, +2, +4 and +6. Sulfur forms stable compounds with all elements except the [[noble gas]]es. Sulfur in the solid state ordinarily exists as cyclic crown-shaped S<sub>8</sub> [[molecule]]s.  
Common [[oxidation state]]s of sulphur include &minus;2, +2, +4 and +6. Sulphur forms stable compounds with all elements except the [[noble gas]]es. Sulphur in the solid state ordinarily exists as cyclic crown-shaped S<sub>8</sub> [[molecule]]s.  


{{Image|Sulfur crystals.jpg|right|175px|Sulfur crystals}}  
{{Image|Sulphur crystals.jpg|right|175px|Sulphur crystals}}  


The [[crystallography]] of sulfur is complex. Depending on the specific conditions, the sulfur [[allotrope]]s form several distinct [[crystal structure]]s, with [[rhombic]] and [[monoclinic]] S<sub>8</sub> best known.
The [[crystallography]] of sulphur is complex. Depending on the specific conditions, the sulphur [[allotrope]]s form several distinct [[crystal structure]]s, with [[rhombic]] and [[monoclinic]] S<sub>8</sub> best known.


A noteworthy property of sulfur is that its [[viscosity]] in its molten state, unlike most other liquids, increases above temperatures of 200 °C due to the formation of [[polymer]]s. The molten sulfur assumes a dark red color above this temperature. At higher temperatures, however, the viscosity is decreased as depolymerization occurs.
A noteworthy property of sulphur is that its [[viscosity]] in its molten state, unlike most other liquids, increases above temperatures of 200 °C due to the formation of [[polymer]]s. The molten sulphur assumes a dark red colour above this temperature. At higher temperatures, however, the viscosity is decreased as depolymerization occurs.


[[Amorphous]] or "plastic" sulfur can be produced through the rapid cooling of molten sulfur. [[X-ray crystallography]] studies show that the amorphous form may have a [[helix|helical]] structure with eight atoms per turn. This form is [[Metastability in molecules|metastable]] at room temperature and gradually reverts back to crystalline form. This process happens within a matter of hours to days but can be rapidly catalyzed.
[[Amorphous]] or "plastic" sulphur can be produced through the rapid cooling of molten sulphur. [[X-ray crystallography]] studies show that the amorphous form may have a [[helix|helical]] structure with eight atoms per turn. This form is [[Metastability in molecules|metastable]] at room temperature and gradually reverts back to crystalline form. This process happens within a matter of hours to days but can be rapidly catalysed.


==References==
==References==
{{reflist}}
{{reflist}}[[Category:Suggestion Bot Tag]]

Latest revision as of 11:00, 23 October 2024

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
Properties [?]
 
This editable Main Article is under development and subject to a disclaimer.
Sulphur
32.065(5) 6
4
2
-2
  S
16
1s22s22p63s23p4 16,3,p
[ ? ] Non-Metal:
Compounds:
SO2, SO3, H2S ,H2SO4

Sulphur (aka sulfur) is a chemical element, typically found as a yellowish crystalline solid in its elemental form. It has the chemical symbol S, atomic number (number of protons) Z = 16, and a standard atomic weight of 32.065 g/mol.

Sulphur is widely used in the manufacture of sulphuric acid (H2SO4} as well as various fertilisers. The vast majority of the 66,000,000 metric tons of sulphur produced worldwide in 2006 was by-product sulphur recovered from petroleum refining and natural gas processing plants by the Claus process.[1]

Characteristics

At room temperature, sulphur is a soft, bright-yellow solid. Elemental sulphur has only a faint odour, similar to that of matches.

Sulphur burns with a blue flame that emits sulphur dioxide, notable for its peculiar suffocating odour due to dissolving in the mucosa to form dilute sulphurous acid.

Sulphur itself is insoluble in water, but soluble in carbon disulfide and to a lesser extent in other non-polar organic solvents such as benzene and toluene.

Common oxidation states of sulphur include −2, +2, +4 and +6. Sulphur forms stable compounds with all elements except the noble gases. Sulphur in the solid state ordinarily exists as cyclic crown-shaped S8 molecules.

File:Sulphur crystals.jpg
Sulphur crystals

The crystallography of sulphur is complex. Depending on the specific conditions, the sulphur allotropes form several distinct crystal structures, with rhombic and monoclinic S8 best known.

A noteworthy property of sulphur is that its viscosity in its molten state, unlike most other liquids, increases above temperatures of 200 °C due to the formation of polymers. The molten sulphur assumes a dark red colour above this temperature. At higher temperatures, however, the viscosity is decreased as depolymerization occurs.

Amorphous or "plastic" sulphur can be produced through the rapid cooling of molten sulphur. X-ray crystallography studies show that the amorphous form may have a helical structure with eight atoms per turn. This form is metastable at room temperature and gradually reverts back to crystalline form. This process happens within a matter of hours to days but can be rapidly catalysed.

References