Rational function: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Mirzhan Irkegulov
(New page: {{subpages}} '''Rational function''' is a quotient of two polynomial functions. It distinguishes from ''irrational function'' which cannot be written as a ratio of two [[polyno...)
 
mNo edit summary
 
(One intermediate revision by one other user not shown)
Line 9: Line 9:
where ''s'' and ''t'' are [[polynomial function]] in ''x'' and ''t'' is not the [[zero polynomial]].  The [[domain (mathematics)|domain]] of ''f'' is the set of all points ''x'' for which the denominator ''t''(''x'') is not zero.
where ''s'' and ''t'' are [[polynomial function]] in ''x'' and ''t'' is not the [[zero polynomial]].  The [[domain (mathematics)|domain]] of ''f'' is the set of all points ''x'' for which the denominator ''t''(''x'') is not zero.


On the graph restricted values of an axis forms a straight line, called [[asymptote]], which cannot be crossed by the function. If zeros of [[numerator]] and [[denominator]] are equal, then the function is a horizontal line with the hole on a restricted value of ''x''.
On the graph restricted values of an axis form a straight line, called [[asymptote]], which cannot be crossed by the function. If zeros of [[numerator]] and [[denominator]] are equal, then the function is a horizontal line with the hole on a restricted value of ''x''.


==Examples==
==Examples==
Let's see an example of <math>f(x) = \frac{x^2-x-6x}{x^2+x-20}</math> in a factored form: <math>f(x) = \frac{(x+2)(x-3)}{(x+5)(x-4)}</math>. Obviously, roots of denominator is -5 and 4. That is, if ''x'' takes one of these two values, the denominator becomes equal to zero. Since the division by zero is impossible, the function is not defined or discontinuous at ''x'' = -5 and ''x'' = 4.
Let's see an example of <math>f(x) = \frac{x^2-x-6x}{x^2+x-20}</math> in a factored form: <math>f(x) = \frac{(x+2)(x-3)}{(x+5)(x-4)}</math>. Obviously, roots of denominator is -5 and 4. That is, if ''x'' takes one of these two values, the denominator becomes equal to zero. Since the [[division by zero]] is impossible, the function is not defined or discontinuous at ''x'' = -5 and ''x'' = 4.


The function is continuous at all other values for ''x''. The domain (area of acceptable values) for the function, as expressed in interval notation, is: <math> (-\infty; -5) \cup (-5; 4) \cup (4; \infty) </math>
The function is continuous at all other values for ''x''. The domain (area of acceptable values) for the function, as expressed in [[interval notation]], is: <math> (-\infty; -5) \cup (-5; 4) \cup (4; \infty) </math>[[Category:Suggestion Bot Tag]]

Latest revision as of 06:00, 10 October 2024

This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

Rational function is a quotient of two polynomial functions. It distinguishes from irrational function which cannot be written as a ratio of two polynomials.

Definition

A rational function is a function of the form

where s and t are polynomial function in x and t is not the zero polynomial. The domain of f is the set of all points x for which the denominator t(x) is not zero.

On the graph restricted values of an axis form a straight line, called asymptote, which cannot be crossed by the function. If zeros of numerator and denominator are equal, then the function is a horizontal line with the hole on a restricted value of x.

Examples

Let's see an example of in a factored form: . Obviously, roots of denominator is -5 and 4. That is, if x takes one of these two values, the denominator becomes equal to zero. Since the division by zero is impossible, the function is not defined or discontinuous at x = -5 and x = 4.

The function is continuous at all other values for x. The domain (area of acceptable values) for the function, as expressed in interval notation, is: