Special function/Catalogs/Catalog: Difference between revisions
imported>Fredrik Johansson (a start (having fun making lists per Larry's suggestion!)) |
imported>Chris Day No edit summary |
||
(24 intermediate revisions by 9 users not shown) | |||
Line 1: | Line 1: | ||
{{subpages}} | |||
[[Special function]]s are mathematical [[function (mathematics)|function]]s that turn up so often that they have been named. This page lists the most common special functions by category, along with some of the properties that are important to functions belonging to each category. It must be stressed that there is no single way to categorize functions; any practical classification will contain overlapping categories. | |||
==Algebraic functions== | ==Algebraic functions== | ||
* [[Polynomial]]s | * [[Polynomial]]s | ||
Line 25: | Line 28: | ||
|<math>\exp(x)</math>, <math>e^x</math> | |<math>\exp(x)</math>, <math>e^x</math> | ||
|- | |- | ||
|[[Natural logarithm]] | |[[Logarithm|Natural logarithm]] | ||
|<math>\log(x)</math>, <math>\ln(x)</math> | |<math>\log(x)</math>, <math>\ln(x)</math> | ||
|} | |} | ||
[[Trigonometric function]]s: | |||
{| class="wikitable" | {| class="wikitable" style="margin-top:0" | ||
!Name | !Name | ||
!Notation | !Notation | ||
Line 49: | Line 52: | ||
|<math>\tan(x)</math> | |<math>\tan(x)</math> | ||
|Opposite / Adjacent | |Opposite / Adjacent | ||
|<math>-\mathit{i}(e^{\mathit{i}x}-e^{-\mathit{i}x})/(e^{\mathit{i}x}+e^{-\mathit{i}x})</math> | |||
|- | |||
|[[Cosecant]] | |||
|<math>\csc(x)</math> | |||
|Hypotenuse / Opposite | |||
| | |||
|- | |||
|[[Secant]] | |||
|<math>\sec(x)</math> | |||
|Hypotenuse / Adjacent | |||
| | |||
|- | |||
|[[Cotangent]] | |||
|<math>\cot(x)</math> | |||
|Adjacent / Opposite | |||
| | | | ||
|} | |} | ||
== | [[Hyperbolic function]]s: | ||
{| class="wikitable" style="margin-top:0" | |||
!Name | |||
!Notation | |||
!Exponential formula | |||
|- | |||
|[[Hyperbolic sine]] | |||
|<math>\sinh(x)</math> | |||
|<math>(e^{x}-e^{-x})/2</math> | |||
|- | |||
|[[Hyperbolic cosine]] | |||
|<math>\cosh(x)</math> | |||
|<math>(e^{x}+e^{-x})/2</math> | |||
|- | |||
|[[Hyperbolic tangent]] | |||
|<math>\tanh(x)</math> | |||
|<math>(e^{x}-e^{-x})/(e^{x}+e^{-x})</math> | |||
|- | |||
|[[Hyperbolic cosecant]] | |||
|<math>\mathrm{csch}(x)</math> | |||
|<math>2/(e^{x}-e^{-x})</math> | |||
|- | |||
|[[Hyperbolic secant]] | |||
|<math>\mathrm{sech}(x)</math> | |||
|<math>2/(e^{x}+e^{-x})</math> | |||
|- | |||
|[[Hyperbolic cotangent]] | |||
|<math>\coth(x)</math> | |||
|<math>(e^{x}+e^{-x})/(e^{x}-e^{-x})</math> | |||
|} | |||
[[Inverse trigonometric function]]s: | |||
{| class="wikitable" style="margin-top:0" | |||
!Name | |||
!Notation | |||
!Triangle formula | |||
!Exponential formula | |||
|- | |||
|[[Arcsine]] | |||
|<math>\arcsin(x)</math> | |||
| | |||
| | |||
|- | |||
|[[Arccosine]] | |||
|<math>\arccos(x)</math> | |||
| | |||
| | |||
|- | |||
|[[Arctangent]] | |||
|<math>\arctan(x)</math> | |||
| | |||
| | |||
|- | |||
|[[Arccosecant]] | |||
|<math>\arccsc(x)</math> | |||
| | |||
| | |||
|- | |||
|[[Arcsecant]] | |||
|<math>\arcsec(x)</math> | |||
| | |||
| | |||
|- | |||
|[[Arccotangent]] | |||
|<math>\arccot(x)</math> | |||
| | |||
| | |||
|} | |||
== | [[Inverse hyperbolic function]]s: | ||
{| class="wikitable" style="margin-top:0" | |||
!Name | |||
!Notation | |||
!Logarithmic formula | |||
|- | |||
|[[Inverse hyperbolic sine]] | |||
|<math>\mathrm{arcsinh}(x)</math> | |||
|<math>\ln{(x+\sqrt{x^2+1)}}</math> | |||
|- | |||
|[[Inverse hyperbolic cosine]] | |||
|<math>\mathrm{arccosh}(x)</math> | |||
|<math>\ln{(x+\sqrt{x^2-1})}</math> | |||
|- | |||
|[[Inverse hyperbolic tangent]] | |||
|<math>\mathrm{arctanh}(x)</math> | |||
|<math>\frac{1}{2}\ln{\frac{1+x}{1-x}}</math> | |||
|- | |||
|[[Inverse hyperbolic cosecant]] | |||
|<math>\mathrm{arccsch}(x)</math> | |||
| | |||
|- | |||
|[[Inverse hyperbolic secant]] | |||
|<math>\mathrm{arcsech}(x)</math> | |||
| | |||
|- | |||
|[[Inverse hyperbolic cotangent]] | |||
|<math>\mathrm{arccoth}(x)</math> | |||
| | |||
|} | |||
Other: | |||
* [[Sinc function]] | |||
* [[Lambert W-function]] | * [[Lambert W-function]] | ||
== | ==Exponential integral related== | ||
{| class="wikitable" | |||
!Function | |||
!Notation | |||
!Definition | |||
|- | |||
|[[Exponential integral]] | |||
|<math>\mathrm{Ei}(x)</math> | |||
|<math>\textstyle -\int_{-x}^{\infty} \frac{e^{-t}}{t} \, dt</math> | |||
|- | |||
|[[Logarithmic integral]] | |||
|<math>\mathrm{li}(x)</math> | |||
|<math>\textstyle \int_0^x \frac{1}{\ln t} \, dt</math> | |||
|} | |||
[[Trigonometric integral]]s: | |||
{| class="wikitable" | |||
!Function | |||
!Notation | |||
!Definition | |||
|- | |||
|[[Sine integral]] | |||
|<math>\mathrm{Si}(x)</math> | |||
|<math>\textstyle \int_0^x \frac{\sin t}{t} \, dt</math> | |||
|- | |||
|[[Hyperbolic sine integral]] | |||
|<math>\mathrm{Shi}(x)</math> | |||
|<math>\textstyle \int_0^x \frac{\sinh t}{t} \, dt</math> | |||
|- | |||
|[[Cosine integral]] | |||
|<math>\mathrm{Ci}(x)</math> | |||
|<math>\textstyle \gamma + \ln x + \int_0^x \frac{\cos t - 1}{t} \, dt</math> | |||
|- | |||
|[[Hyperbolic cosine integral]] | |||
|<math>\mathrm{Chi}(x)</math> | |||
|<math>\textstyle \gamma + \ln x + \int_0^x \frac{\cosh t - 1}{t} \, dt</math> | |||
|} | |||
Note: <math>\gamma</math> is [[Euler's constant]] | |||
Related to the [[normal distribution]]: | |||
{| class="wikitable" | |||
!Name | |||
!Notation | |||
!Definition | |||
|- | |||
|[[Gaussian function]] | |||
|none standardized | |||
|<math>f(x) = a e^{-(x-b)^2/c^2}</math> | |||
|- | |||
|[[Error function]] | |||
|<math>\mathrm{erf}(x)</math> | |||
|<math>\textstyle \frac{2}{\sqrt{\pi}}\int_0^x e^{-t^2} dt</math> | |||
|- | |||
|[[Complementary error function]] | |||
|<math>\mathrm{erfc}(x)</math> | |||
|<math>1-\mathrm{erf}(x)</math> | |||
|} | |||
See also gamma related functions below; in particular, the incomplete gamma functions. | |||
==Bessel function related== | ==Bessel function related== | ||
Line 85: | Line 254: | ||
!Interval | !Interval | ||
!Weight function | !Weight function | ||
!<math>f_0</math>, <math>f_1</math>, <math>f_2</math>, <math>f_3</math>, ... | |||
|- | |- | ||
|[[Chebyshev polynomials|Chebyshev]] (first kind) | |[[Chebyshev polynomials|Chebyshev]] (first kind) | ||
Line 90: | Line 260: | ||
|<math>-1,1</math> | |<math>-1,1</math> | ||
|<math>(1-x^2)^{-1/2}</math> | |<math>(1-x^2)^{-1/2}</math> | ||
|<math>1</math>, <math>x</math>, <math>2x^2 - 1</math>, <math>4x^3 - 3x</math>, ... | |||
|- | |- | ||
|[[Chebyshev polynomials|Chebyshev]] (second kind) | |[[Chebyshev polynomials|Chebyshev]] (second kind) | ||
Line 95: | Line 266: | ||
|<math>-1,1</math> | |<math>-1,1</math> | ||
|<math>(1-x^2)^{1/2}</math> | |<math>(1-x^2)^{1/2}</math> | ||
|<math>1</math>, <math>2x</math>, <math>4x^2 - 1</math>, <math>8x^3 - 4x</math>, ... | |||
|- | |- | ||
|[[Legendre polynomials|Legendre]] | |[[Legendre polynomials|Legendre]] | ||
Line 100: | Line 272: | ||
|<math>-1,1</math> | |<math>-1,1</math> | ||
|<math>1</math> | |<math>1</math> | ||
|<math>1</math>, <math>x</math>, <math>{\textstyle \frac{1}{2}}</math><math>(3x^2-1)</math>, <math>{\textstyle \frac{1}{2}}</math><math>(5x^3-3x)</math>, … | |||
|- | |- | ||
|[[Hermite polynomials|Hermite]] | |[[Hermite polynomials|Hermite]] | ||
Line 105: | Line 278: | ||
|<math>-\infty,\infty</math> | |<math>-\infty,\infty</math> | ||
|<math>e^{-x^2}</math> | |<math>e^{-x^2}</math> | ||
| | |||
|- | |- | ||
|[[Laguerre polynomials|Laguerre]] | |[[Laguerre polynomials|Laguerre]] | ||
Line 110: | Line 284: | ||
|<math>0,\infty</math> | |<math>0,\infty</math> | ||
|<math>e^{-x}</math> | |<math>e^{-x}</math> | ||
| | |||
|- | |- | ||
|[[Associated Laguerre polynomials|Associated Laguerre]] | |[[Associated Laguerre polynomials|Associated Laguerre]] | ||
Line 115: | Line 290: | ||
|<math>0,\infty</math> | |<math>0,\infty</math> | ||
|<math>x^{\alpha} e^{-x}</math> | |<math>x^{\alpha} e^{-x}</math> | ||
| | |||
|} | |} | ||
Line 138: | Line 314: | ||
|<math>1 \cdot 3 \cdot 5 \cdots x \;\;(x \; \mathrm{odd})</math><br/> | |<math>1 \cdot 3 \cdot 5 \cdots x \;\;(x \; \mathrm{odd})</math><br/> | ||
<math>2 \cdot 4 \cdot 6 \cdots x \;\;(x \; \mathrm{even})</math> | <math>2 \cdot 4 \cdot 6 \cdots x \;\;(x \; \mathrm{even})</math> | ||
|<math>\ | |<math>\frac{\Gamma(x+1)}{2^\frac{x-1}2 *\Gamma(\frac{x+1}2)}\;\;(x \; \mathrm{odd})</math> | ||
<br/><math>2^\frac{x-1}2 * \Gamma(\frac{x+1}2) \;\;(x \; \mathrm{even}) </math> | |||
|- | |- | ||
|[[Binomial coefficient]] | |[[Binomial coefficient]] | ||
Line 168: | Line 345: | ||
|<math>\psi(x), \psi^{(0)}(x)</math> | |<math>\psi(x), \psi^{(0)}(x)</math> | ||
|<math>H_{x-1}-\gamma</math> | |<math>H_{x-1}-\gamma</math> | ||
|<math>\begin{matrix}\frac{d}{dx}\end{matrix} \ | |<math>\begin{matrix}\frac{d}{dx}\end{matrix} \ln \Gamma(x)</math> | ||
|- | |- | ||
|[[Polygamma function]]<br/>(of order ''m'') | |[[Polygamma function]]<br/>(of order ''m'') | ||
|<math>\psi^{(m)}(x)</math> | |<math>\psi^{(m)}(x)</math> | ||
| | | | ||
|<math>\left(\begin{matrix}\frac{d}{dx}\end{matrix}\right)^{m+1} \ | |<math>\left(\begin{matrix}\frac{d}{dx}\end{matrix}\right)^{m+1} \ln \Gamma(x)</math> | ||
|} | |} | ||
Line 195: | Line 372: | ||
* [[Hypergeometric function]]s | * [[Hypergeometric function]]s | ||
* [[Meijer G-function]] | * [[Meijer G-function]] | ||
Latest revision as of 13:58, 8 December 2009
The metadata subpage is missing. You can start it via filling in this form or by following the instructions that come up after clicking on the [show] link to the right. | |||
---|---|---|---|
|
Special functions are mathematical functions that turn up so often that they have been named. This page lists the most common special functions by category, along with some of the properties that are important to functions belonging to each category. It must be stressed that there is no single way to categorize functions; any practical classification will contain overlapping categories.
Algebraic functions
Complex parts
Elementary transcendental functions
Name | Notation |
---|---|
Exponential function | , |
Natural logarithm | , |
Name | Notation | Triangle formula | Exponential formula |
---|---|---|---|
Sine | Opposite / Hypotenuse | ||
Cosine | Adjacent / Hypotenuse | ||
Tangent | Opposite / Adjacent | ||
Cosecant | Hypotenuse / Opposite | ||
Secant | Hypotenuse / Adjacent | ||
Cotangent | Adjacent / Opposite |
Name | Notation | Exponential formula |
---|---|---|
Hyperbolic sine | ||
Hyperbolic cosine | ||
Hyperbolic tangent | ||
Hyperbolic cosecant | ||
Hyperbolic secant | ||
Hyperbolic cotangent |
Inverse trigonometric functions:
Name | Notation | Triangle formula | Exponential formula |
---|---|---|---|
Arcsine | |||
Arccosine | |||
Arctangent | |||
Arccosecant | |||
Arcsecant | |||
Arccotangent |
Name | Notation | Logarithmic formula |
---|---|---|
Inverse hyperbolic sine | ||
Inverse hyperbolic cosine | ||
Inverse hyperbolic tangent | ||
Inverse hyperbolic cosecant | ||
Inverse hyperbolic secant | ||
Inverse hyperbolic cotangent |
Other:
Function | Notation | Definition |
---|---|---|
Exponential integral | ||
Logarithmic integral |
Function | Notation | Definition |
---|---|---|
Sine integral | ||
Hyperbolic sine integral | ||
Cosine integral | ||
Hyperbolic cosine integral |
Note: is Euler's constant
Related to the normal distribution:
Name | Notation | Definition |
---|---|---|
Gaussian function | none standardized | |
Error function | ||
Complementary error function |
See also gamma related functions below; in particular, the incomplete gamma functions.
Elliptic integrals
Orthogonal polynomials
See catalog of orthogonal polynomials for a more detailed listing.
Name | Notation | Interval | Weight function | , , , , ... |
---|---|---|---|---|
Chebyshev (first kind) | , , , , ... | |||
Chebyshev (second kind) | , , , , ... | |||
Legendre | , , , , … | |||
Hermite | ||||
Laguerre | ||||
Associated Laguerre |
Name | Notation | Discrete formula | Continuous formula |
---|---|---|---|
Factorial | |||
Gamma function | |||
Double factorial |
|
| |
Binomial coefficient | |||
Rising factorial | |||
Falling factorial | |||
Beta function | |||
Harmonic number | |||
Digamma function | |||
Polygamma function (of order m) |
- Incomplete gamma function
- Incomplete beta function
- Regularized gamma function
- Regularized beta function
- Barnes G-function
Notes:
- is Euler's constant
- The polygamma functions are generalized to continuous m by the Hurwitz zeta function
Hypergeometric functions
Note: many of the preceding functions are special cases of the following: