Special function/Catalogs/Catalog: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Charles Blackham
(expansion of circular, hyperbolic & inv hyperbolic trig f'ns)
imported>Fredrik Johansson
(consistency; fix some tex markup)
Line 75: Line 75:
!Exponential formula
!Exponential formula
|-
|-
|[[Hyperbolic Sine]]
|[[Hyperbolic sine]]
|<math>\sinh(x)</math>
|<math>\sinh(x)</math>
|<math>(e^{x}-e^{-x})/2</math>
|<math>(e^{x}-e^{-x})/2</math>
|-
|-
|[[Hyperbolic Cosine]]
|[[Hyperbolic cosine]]
|<math>\cosh(x)</math>
|<math>\cosh(x)</math>
|<math>(e^{x}+e^{-x})/2</math>
|<math>(e^{x}+e^{-x})/2</math>
|-
|-
|[[Hyperbolic Tangent]]
|[[Hyperbolic tangent]]
|<math>\tanh(x)</math>
|<math>\tanh(x)</math>
|<math>(e^{x}-e^{-x})/(e^{x}+e^{-x})</math>
|<math>(e^{x}-e^{-x})/(e^{x}+e^{-x})</math>
|-
|-
|[[Hyperbolic Cosecant]]
|[[Hyperbolic cosecant]]
|<math>\operatorname{csch}(x)</math>
|<math>\operatorname{csch}(x)</math>
|<math>2/(e^{x}-e^{-x})</math>
|<math>2/(e^{x}-e^{-x})</math>
|-
|-
|[[Hyperbolic Secant]]
|[[Hyperbolic secant]]
|<math>\operatorname{sech}(x)</math>
|<math>\operatorname{sech}(x)</math>
|<math>2/(e^{x}+e^{-x})</math>
|<math>2/(e^{x}+e^{-x})</math>
|-
|-
|[[Hyperbolic Cotangent]]
|[[Hyperbolic cotangent]]
|<math>\coth(x)</math>
|<math>\coth(x)</math>
|<math>(e^{x}+e^{-x})/(e^{x}-e^{-x})</math>
|<math>(e^{x}+e^{-x})/(e^{x}-e^{-x})</math>
Line 108: Line 108:
!Logarithmic formula
!Logarithmic formula
|-
|-
|[[Inverse Hyperbolic Sine]]
|[[Inverse hyperbolic sine]]
|<math>\operatorname{arcsinh}(x)</math>
|<math>\operatorname{arcsinh}(x)</math>
|<math>\ln{x+\sqrt{x^2+1}}</math>
|<math>\ln{x+\sqrt{x^2+1}}</math>
|-
|-
|[[Inverse Hyperbolic Cosine]]
|[[Inverse hyperbolic cosine]]
|<math>\operatorname{arccosh}(x)</math>
|<math>\operatorname{arccosh}(x)</math>
|<math>\ln{x+\sqrt{x^2-1}}</math>
|<math>\ln{x+\sqrt{x^2-1}}</math>
|-
|-
|[[Inverse Hyperbolic Tangent]]
|[[Inverse hyperbolic tangent]]
|<math>\operatorname{arctanh}(x)</math>
|<math>\operatorname{arctanh}(x)</math>
|<math>\frac{1}{2}ln{\frac{1+x}{1-x}}</math>
|<math>\frac{1}{2}\ln{\frac{1+x}{1-x}}</math>
|-
|-
|[[Inverse Hyperbolic Cosecant]]
|[[Inverse hyperbolic cosecant]]
|<math>\operatorname{arccsch}(x)</math>
|<math>\operatorname{arccsch}(x)</math>
|
|
|-
|-
|[[Inverse Hyperbolic Secant]]
|[[Inverse hyperbolic secant]]
|<math>\operatorname{arcsech}(x)</math>
|<math>\operatorname{arcsech}(x)</math>
|
|
|-
|-
|[[Inverse Hyperbolic Cotangent]]
|[[Inverse hyperbolic cotangent]]
|<math>\operatorname{arccoth}(x)</math>
|<math>\operatorname{arccoth}(x)</math>
|
|
|}
|}


===Other===
===Other===
Line 251: Line 250:
|<math>\psi(x), \psi^{(0)}(x)</math>
|<math>\psi(x), \psi^{(0)}(x)</math>
|<math>H_{x-1}-\gamma</math>
|<math>H_{x-1}-\gamma</math>
|<math>\begin{matrix}\frac{d}{dx}\end{matrix} \log \Gamma(x)</math>
|<math>\begin{matrix}\frac{d}{dx}\end{matrix} \ln \Gamma(x)</math>
|-
|-
|[[Polygamma function]]<br/>(of order ''m'')
|[[Polygamma function]]<br/>(of order ''m'')
|<math>\psi^{(m)}(x)</math>
|<math>\psi^{(m)}(x)</math>
|
|
|<math>\left(\begin{matrix}\frac{d}{dx}\end{matrix}\right)^{m+1} \log \Gamma(x)</math>
|<math>\left(\begin{matrix}\frac{d}{dx}\end{matrix}\right)^{m+1} \ln \Gamma(x)</math>
|}
|}



Revision as of 14:54, 25 April 2007

Special functions are mathematical functions that turn up so often that they have been named. This page lists the most common special functions by category, along with some of the properties that are important to functions belonging to each category. It must be stressed that there is no single way to categorize functions; any practical classification will contain overlapping categories.

Algebraic functions

Complex parts

Elementary transcendental functions

Name Notation
Exponential function ,
Natural logarithm ,

Trigonometric functions

Name Notation Triangle formula Exponential formula
Sine Opposite / Hypotenuse
Cosine Adjacent / Hypotenuse
Tangent Opposite / Adjacent
Cosecant Hypotenuse / Opposite
Secant Hypotenuse / Adjacent
Cotangent Adjacent / Opposite

Hyperbolic functions

Name Notation Exponential formula
Hyperbolic sine
Hyperbolic cosine
Hyperbolic tangent
Hyperbolic cosecant
Hyperbolic secant
Hyperbolic cotangent

Inverse trigonometric functions

Inverse hyperbolic functions

Name Notation Logarithmic formula
Inverse hyperbolic sine
Inverse hyperbolic cosine
Inverse hyperbolic tangent
Inverse hyperbolic cosecant
Inverse hyperbolic secant
Inverse hyperbolic cotangent

Other

Nonelementary integrals

Bessel function related

Elliptic integrals

Orthogonal polynomials

See catalog of orthogonal polynomials for a more detailed listing.

Name Notation Interval Weight function , , , , ...
Chebyshev (first kind) , , , , ...
Chebyshev (second kind) , , , , ...
Legendre
Hermite
Laguerre
Associated Laguerre

Factorial and gamma related

Name Notation Discrete formula Continuous formula
Factorial
Gamma function
Double factorial

Binomial coefficient
Rising factorial
Falling factorial
Beta function
Harmonic number
Digamma function
Polygamma function
(of order m)

Notes:

Zeta function related

Hypergeometric functions

Note: many of the preceding functions are special cases of the following:

See also