Special function/Catalogs/Catalog: Difference between revisions
< Special function | Catalogs
Jump to navigation
Jump to search
imported>Fredrik Johansson No edit summary |
imported>Fredrik Johansson |
||
Line 102: | Line 102: | ||
!Interval | !Interval | ||
!Weight function | !Weight function | ||
!<math>P_0</math>, <math>P_1</math>, <math>P_2</math>, <math>P_3</math>, ... | |||
|- | |- | ||
|[[Chebyshev polynomials|Chebyshev]] (first kind) | |[[Chebyshev polynomials|Chebyshev]] (first kind) | ||
Line 107: | Line 108: | ||
|<math>-1,1</math> | |<math>-1,1</math> | ||
|<math>(1-x^2)^{-1/2}</math> | |<math>(1-x^2)^{-1/2}</math> | ||
|<math>1</math>, <math>x</math>, <math>2x^2 - 1</math>, <math>4x^3 - 3x</math>, ... | |||
|- | |- | ||
|[[Chebyshev polynomials|Chebyshev]] (second kind) | |[[Chebyshev polynomials|Chebyshev]] (second kind) | ||
Line 112: | Line 114: | ||
|<math>-1,1</math> | |<math>-1,1</math> | ||
|<math>(1-x^2)^{1/2}</math> | |<math>(1-x^2)^{1/2}</math> | ||
|<math>1</math>, <math>2x</math>, <math>4x^2 - 1</math>, <math>8x^3 - 4x</math>, ... | |||
|- | |- | ||
|[[Legendre polynomials|Legendre]] | |[[Legendre polynomials|Legendre]] | ||
Line 117: | Line 120: | ||
|<math>-1,1</math> | |<math>-1,1</math> | ||
|<math>1</math> | |<math>1</math> | ||
| | |||
|- | |- | ||
|[[Hermite polynomials|Hermite]] | |[[Hermite polynomials|Hermite]] | ||
Line 122: | Line 126: | ||
|<math>-\infty,\infty</math> | |<math>-\infty,\infty</math> | ||
|<math>e^{-x^2}</math> | |<math>e^{-x^2}</math> | ||
| | |||
|- | |- | ||
|[[Laguerre polynomials|Laguerre]] | |[[Laguerre polynomials|Laguerre]] | ||
Line 127: | Line 132: | ||
|<math>0,\infty</math> | |<math>0,\infty</math> | ||
|<math>e^{-x}</math> | |<math>e^{-x}</math> | ||
| | |||
|- | |- | ||
|[[Associated Laguerre polynomials|Associated Laguerre]] | |[[Associated Laguerre polynomials|Associated Laguerre]] | ||
Line 132: | Line 138: | ||
|<math>0,\infty</math> | |<math>0,\infty</math> | ||
|<math>x^{\alpha} e^{-x}</math> | |<math>x^{\alpha} e^{-x}</math> | ||
| | |||
|} | |} | ||
Revision as of 08:29, 25 April 2007
Special functions are mathematical functions that turn up so often that they have been named. This page lists the most common special functions by category, along with some of the properties that are important to functions belonging to each category. It must be stressed that there is no single way to categorize functions; any practical classification will contain overlapping categories.
Algebraic functions
Complex parts
Elementary transcendental functions
Name | Notation |
---|---|
Exponential function | , |
Natural logarithm | , |
Trigonometric functions
Name | Notation | Triangle formula | Exponential formula |
---|---|---|---|
Sine | Opposite / Hypotenuse | ||
Cosine | Adjacent / Hypotenuse | ||
Tangent | Opposite / Adjacent | ||
Cosecant | Hypotenuse / Opposite | ||
Secant | Hypotenuse / Adjacent | ||
Cotangent | Adjacent / Opposite |
Hyperbolic functions
Inverse trigonometric functions
Inverse hyperbolic functions
Other
Nonelementary integrals
Elliptic integrals
Orthogonal polynomials
See catalog of orthogonal polynomials for a more detailed listing.
Name | Notation | Interval | Weight function | , , , , ... |
---|---|---|---|---|
Chebyshev (first kind) | , , , , ... | |||
Chebyshev (second kind) | , , , , ... | |||
Legendre | ||||
Hermite | ||||
Laguerre | ||||
Associated Laguerre |
Name | Notation | Discrete formula | Continuous formula |
---|---|---|---|
Factorial | |||
Gamma function | |||
Double factorial |
|
||
Binomial coefficient | |||
Rising factorial | |||
Falling factorial | |||
Beta function | |||
Harmonic number | |||
Digamma function | |||
Polygamma function (of order m) |
- Incomplete gamma function
- Incomplete beta function
- Regularized gamma function
- Regularized beta function
- Barnes G-function
Notes:
- is Euler's constant
- The polygamma functions are generalized to continuous m by the Hurwitz zeta function
Hypergeometric functions
Note: many of the preceding functions are special cases of the following: