Peano axioms
Jump to navigation
Jump to search
The Peano axioms are a set of formal axioms describing the natural numbers (0, 1, 2, 3 ...). Together, they describe some of the most important properties of the natural numbers: their infinitude, zero as the smallest natural number and the rule of induction.
The axioms
The axioms can be formulated as follows:
- Zero is a natural number.
- Every natural number has a successor, which is also a natural number.
- Zero is not the successor of any natural number.
- Different natural numbers have different successors.
- If Zero has property P, and if it can be shown that:
- (a) If a given natural number n has property P,
- (b) Then its successor Sn also has P,
- Then it follows that all natural numbers have the property P.
The last axiom is called the rule of induction.