HUBO

From Citizendium
Revision as of 12:05, 25 October 2009 by imported>Ro Thorpe (→‎Design and engineering principles)
Jump to navigation Jump to search
The status or A editor fields in the metadata template are either incorrect or absent.
  • If the article has been approved please add the approving editor to the A editor field.
  • Otherwise, please change the status from 0"" to an appropriate value between 1 and 4 in the metadata template.

Please update the metadata template here
This article has a Citable Version.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
Catalogs [?]
Gallery [?]
Video [?]
 
This editable Main Article has an approved citable version (see its Citable Version subpage). While we have done conscientious work, we cannot guarantee that this Main Article, or its citable version, is wholly free of mistakes. By helping to improve this editable Main Article, you will help the process of generating a new, improved citable version.
(CC) Photo: Min Lee
Albert HUBO.

HUBO is a humanoid robot developed at the Korea Advanced Institute of Science and Technology. The first HUBO, KHR-3, was the culmination of 4 years of research based on three earlier prototypes, KHR-0, 1, and 2, and it was officially unveiled to the public in January 6 of 2005.[1] KHR-3 is physically similar to Honda's ASIMO, weighing 56 kg and standing at a height of 125 cm.[2] Albert HUBO is the second and latest HUBO that features an artificial head of Albert Einstein in place of the previous design resembling a CRT monitor. The name HUBO is short for humanoid robot.[3]

Development history

The first HUBO was developed by mechanical engineering professor Oh Junho and his Ph.D. student teams over the course of about 20 years. During much of this time, the HUBO was steadily developed, and the involvement of amateurs resulted in a very low development cost of about $500,000. (In comparison, Honda had spent $300 million on its ASIMO at the time of the KHR-3's completion.)[4]

The first prototype was the KHR-0 (KAIST Humanoid Robot), which essentially consisted of two legs without an upper body. It was built in 2001 for the purpose of investigating the specifications of actuators (device that receives electric signal and performs mechanical action), such as power, torque, and speed, and the optimal weight and size of a humanoid robot.[5][6]

(GNU) Image: Laurens van Lieshout
Harmonic drive.

By January of 2002, the research proceeded to create a bipedal humanoid with a headless torso and two hand-less arms - the KHR-1. The purpose of the KHR-1 was to demonstrate autonomous walking that involves real-time motion control through sensory feedback. (This is different from bipedal walking as a playback motion adopted from an offline learning process, and also walking with partial online adjustments.) Its movements were made by a total of 22 DOFs (degrees of freedom), and it was capable of making right turns and walking at speeds ranging up to 0.8km/hr.[5][7][8][6]

Efforts on a third prototype, the KHR-2, were begun in early 2003 and ended by the beginning of 2004.[9]

Design and engineering principles

For practical and efficient engineering, the robot was built at a child's height of 119 cm.

In order to simulate autonomous walking, the KHR-1 was built without external connections, and it was controlled wirelessly and operated on internal batteries with low level of consumption. which were all built with harmonic drives in order to avoid backlash in the gears and to achieve a light, compact design. The DOFs of the different axes in the joints of shoulders, waist, hips, and ankles were merged into intersections in order to attain a simple, closed-form solution (that is comprised of well-known mathematical functions) of inverse kinematics (the computation of the robot's movements). The KHR-1's walking movement was based on the Zero Moment Point trajectory (points of contact on the ground where the total moment of inertia of the active forces equals to 0) predicted based on a simple model of the robot.[5][8][6]

notes

  1. Birth of Korean Humanoid Robot Marks Brilliance Advance in Korea Robotics, Chosun Ilbo. 2004-12-22.
  2. Specification of KHR-3 (HUBO), Hubo Lab. Date accessed: 2009-02-24.
  3. Specification of Albert HUBO, Hubo Lab. Date accessed: 2009-02-24.
  4. Korean Robotics Steps Into the Future, Lee Sung Kyu and Todd Thacker, OhmyNews International. 2005-01-18.
  5. 5.0 5.1 5.2 Oh, et al, "Design and Walking Control of the Humanoid Robot, KHR-2(KAIST Humanoid Robot - 2)," 2004.
  6. 6.0 6.1 6.2 Oh, et al, "Mechanical Design of the Humanoid Robot Platform, HUBO," 2007.
  7. Introduction of KHR-1, Hubo Lab. Date accessed: 2009-02-20.
  8. 8.0 8.1 Oh, et al, "Development of a Humanoid Biped Walking Robot Platform KHR-1 - Initial Design and Its Performance Evaluation," 2002.
  9. Introduction of KHR-2, Hubo Lab. Date accessed: 2009-03-09.