Erlang (programming language)/Tutorials

From Citizendium
< Erlang (programming language)
Revision as of 16:27, 12 April 2008 by imported>Eric Evers (→‎Sample Output)
Jump to navigation Jump to search

Erlang Language Programming Tutorials

Overview

Simple Types

Advanced Types

Examples

Hello World (serial)

Hello World (parallel)

Prime Sieve (parallel with linda type coordination)

   -module(primes).
   % This is a simple linda tuplespace. Here we use it to find primes numbers.
   % This tuple-space can not have duplicate tuples, but with a prime sieve it does
   %  not matter.
   -compile(export_all).
   start() -> start(100).  % defualt value for max is 100
   start(Max) -> 
       io:format("  Loading ~w numbers into matrix (+N) \n ", [ Max ] ),
       Lid = spawn_link( primes, linda, [Max, [], [] ]),
       Sqrt = round(math:sqrt(Max)+0.5),  
       io:format(" Sqrt(~w) + 1 = ~w \n " , [Max,Sqrt] ),  
       io:format(" Tuple space is started ~n ",[]),  
       io:format(" ~w sieves are spawning (+PN) ~n ", [Sqrt] ),
       io:format(" Non prime sieves are being halted (-PN) ~n ", [] ),
       % load numbers into tuplespace 
       % and spawn seive process
       spawn( primes, put_it, [Max, Max, Lid] ).
   sleep(N) ->
       receive
       after N -> time_is_up  
       end.
   start_sieves(Lid) ->
       Lid ! {self(), get, all, pids},  
       receive 
           {lindagram, pids, Pids} -> done
       end,
       start_sieve_loop(Pids).
   start_sieve_loop([]) -> done;
   start_sieve_loop([Pid|Pids]) ->
       receive
       after 100 -> done
       end,
       Pid ! {start},
       start_sieve_loop(Pids).
   spawn_sieves( _Max, Sqrt, _Lid, Sqrt ) -> done;  
   spawn_sieves( Max, Inc, Lid, Sqrt ) ->
       T = 1000,
       Pid = spawn( primes, sieve, [ Max, Inc+Inc, Inc, Lid, T ]),
       Name = list_to_atom("P" ++ integer_to_list(Inc)),
       Lid ! {put, pid, Name},
       register( Name, Pid),
       io:format(" +~s ", [atom_to_list(Name)]),
       spawn_sieves( Max, Inc+1, Lid, Sqrt ).
   put_it(Max, N, Lid) when N =< 1 ->
       Sqrt = round(math:sqrt(Max)+0.5),
       spawn_sieves( Max, 2, Lid, Sqrt );  
   put_it(Max, N,Lid) when N > 1 ->
       receive
       after 0 ->
           Lid ! {put, N, N},
           if 
               N rem 1000 == 0 ->
                   io:format(" +~w ", [N]);
               true -> done
           end,
           put_it(Max, N-1,Lid)
       end.
   % the 2 sieve starts last and has the most to do so it finishes last
   sieve(Max, N, 2, Lid, _T) when N > Max -> 
       io:format("final sieve ~w done, ~n", [2] ),
       Lid ! {dump,output};
   sieve(Max, N, Inc, _Lid, _T) when N > Max ->    
       io:format("sieve ~w done ", [Inc] );
   sieve(Max, N, Inc, Lid, T) when N =< Max ->   
       receive 
       after 
           T -> NT = 0   
       end,
       receive 
           {lindagram,Number} when Number =/= undefined -> 
               clearing_the_queue;
           {exit} -> exit(normal)
       after
           1 -> done 
       end,
       % remove multiple of number from tuple-space
       Lid ! {self(), get, N},
       Some_time = (N rem 1000)==0,
       if Some_time -> io:format("."); true -> done end,
       % remove (multiple of Inc) from sieve-process space
       Name = list_to_atom("P" ++ integer_to_list(N)),
       Exists = lists:member( Name, registered()),
       if 
           Exists ->
               Name ! {exit},
               io:format(" -~s ", [atom_to_list(Name)] );
           true -> done
       end,
       sieve(Max, N+Inc, Inc, Lid, NT).        % next multiple
       
   %% linda is a simple tutple space 
   %%    if it receives no messages for 2 whole seconds it dumps its contents 
   %%    as output and halts
   linda(Max, Keys, Pids) ->
       receive
       {put, pid, Pid} ->
           linda(Max, Keys, Pids++[Pid]);
       {put, Name, Value} ->
           put( Name, Value),
           linda(Max, Keys++[Name], Pids);
       {From, get, Name} ->
           From ! {lindagram, get( Name)},
           erase( Name ),                          % get is a desructive read  
           linda(Max, Keys--[Name],Pids);
       {From, get, all, pids} ->
           From ! {lindagram, pids, Pids},
           linda(Max, Keys, Pids );
       {From, get, pid, Pid} ->
           L1 = length( Pids ),
           L2 = length( Pids -- [Pid]),
           if 
               L1 > L2 ->  % if it exists
                   From ! {lindagram, pid, Pid};
               true -> 
                   From ! {lindagram, pid, undefined}
           end,
           linda(Max, Keys, Pids );
       {dump,output} ->
           io:format(" ~w final primes remain: ~w ~n ", [length(Keys),  lists:sort(Keys) ])
       after (100*Max) -> % if there is not tuple action after some time then print the results
           io:format(" ~w primes remain: ~w ~n ", [length(Keys),  lists:sort(Keys) ])
       end.

Sample Output

c(primes).
primes:start(1000).
 Loading 1000 numbers into matrix (+N)
 Sqrt(1000) + 1 = 32
 Tuple space is started
 32 sieves are spawning (+PN)
 Non prime sieves are being halted (-PN)
 +1000 <0.46.0>
+P2  +P3  +P4  +P5  +P6  +P7  +P8  +P9  +P10  
+P11  +P12  +P13  +P14  +P15  +P16   
+P17  +P18  +P19  +P20  +P21  +P22  +P23  +P24  
+P25  +P26  +P27  +P28  +P29  +P30  
+P31  -P8  -P6  -P4  -P9  -P12  -P10  -P15  
-P15  -P18  -P14  -P21  -P21  -P22  
-P26  -P20  -P24  -P25  -P27  -P28  -P30  -P30  -P16 
sieve 31 done sieve 29 done 
sieve 19 done sieve 23 done sieve 11 done 
sieve 13 done sieve 17 done sieve 7 done 
.sieve 5 done sieve 3 done .final sieve 2 done,
168 final primes remain: 
[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,
71,73,79,83,89,97,
101,103,107,109,113,127,131,137,139,149,151,157,163,
167,173,179,181,191,193,197,199,
211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,
307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,
401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,
499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,
601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,
701,709,719,727,733,739,743,751,757,761,769,773,787,797, 
809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,
907,911,919,929,937,941,947,953,967,971,977,983,991,997]

References