Étale morphism

From Citizendium
Revision as of 16:39, 5 December 2007 by imported>Giovanni Antonio DiMatteo (creating the page)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

History

Definition

The following conditions are equivalent for a morphism of schemes :

  1. is flat and unramified.

The small étale site

The category of étale -schemes becomes a Grothendieck topology, if one defines the sets of coverings to be jointly-surjective collections of -morphisms ; i.e., such that the union of images covers . That this forms a grothendieck essentially follows from the following three facts:

  1. Open immersions are étale.
  2. The étale property lifts by base change: that is, if is an étale morphism, and is any morphism, then the canonical fibered projection is again étale.
  3. If and are such that is étale, then is étale as well.

Étale cohomology

-adic cohomology