Affine scheme
Jump to navigation
Jump to search
Definition
For a commutative ring , the set (called the prime spectrum of ) denotes the set of prime ideals of $A$. This set is endowed with a topology of closed sets, where closed subsets are defined to be of the form
for any subset . This topology of closed sets is called the Zariski topology on . It is easy to check that , where is the ideal of generated by .
Some Topological Properties
is quasi-compact and , but is rarely Hausdorff.
The Structural Sheaf
has a natural sheaf of rings, denoted , called the structural sheaf of X. The important properties of this sheaf are that
- The stalk is isomorphic to the local ring , where is the prime ideal corresponding to .
- For all , , where is the localization of by the multiplicative set . In particular, .
The Category of Affine Schemes
Regarding as a contravariant functor between the category of commutative rings and the category of affine schemes, one can show that it is in fact an anti-equivalence of categories.