This is an experimental draft. For a brief description of the project and motivations click here.
Complex numbers are defined as ordered pairs of reals:
Such pairs can be added and multiplied as follows
- addition:
- multiplication:
with the addition and multiplication is the field of complex numbers. From another of view, with complex additions and multiplication by real numbers is a 2-dimesional vector space.
To perform basic computations it is convenient to introduce the imaginary unit, i=(0,1).[1] It has the property
Any complex number can be written as (this is often called the algebraic form) and vice-versa. The numbers a and b are called the real part and the imaginary part of z, respectively. We denote and Notice that i makes the multiplication quite natural:
The square root of number in the denominator in the above formula is called the modulus of z and denoted by ,
We have for any two complex numbers and
- provided
For we define also , the conjugate, by Then we have
- provided
- Geometric interpretation
Complex numbers may be naturally represented on the complex plane, where corresponds to the point (x,y), see the fig. 1.
Fig. 1. Graphical representation of a complex number and its conjugate
Obviously, the conjugation is just the symmetry with respect to the x-axis.
- Trigonometric and exponential form
As the graphical representation suggests, any complex number z=a+bi of modulus 1 (i.e. a point from the unit circle) can be written as
for some So actually any (non-null) can be represented as
- where r traditionally stands for |z|.
This is the trigonometric form of the complex number z. If we adopt convention that then such is unique and called the argument of z.[2]
Graphically, the number is the (oriented) angle between the x-axis and the interval containing 0 and z.
Closely related is the exponential notation.
If we define complex exponential as
then it may be shown that
Consequently, any (non-zero) can be written as
- with the same r and theta as above.
This is called the exponential form of the complex number z.
The trigonometric form is particularly well adapted to perform multiplication. If <math>z_1=r_1(\sin(
- ↑ in some applications it is denoted by j as well.
- ↑ In literature the convention is found as well.