Local area network
This article may be deleted soon. | ||
---|---|---|
While there have been a great variety of local area network (LAN) technology and implementations, they share the property of interconnecting personal computers, servers, routers for access outide the LAN, and other computer network|computer network devices, within a relatively close distance of one another. LANs may be on physical media (e.g., twisted pair wire, coaxial cable, optical fiber) or operate over wireless media (i.e., wireless local area network (WLAN)). LAN technical specifications must, at a minimum, define the way(s) in which an individual device connects to the transmission medium, and the way in which multiple devices share that medium with minimum interference. The first is often has a subset of a Physical Layer Specific (PLS) specifications that deal with variants of the basic medium. The second includes Medium Access Control (MAC), or the means for minimizing interference to a shared medium. When LAN components are connected by physical media, the typical maximum distance between a computer and a device connecting it to the LAN does not exceed 100 meters, although there are many ways to extend the distance of connection, including interconnecting LANs anywhere that the Internet can reach. By interconnecting the interconnection devices, a single LAN can service a large building or campus, although operational considerations usually make it wise to separate a large location into multiple interconnected LANs, History and standardsWhile there were many ad hoc means of interconnecting computing devices in a small area, the first widely accepted de facto standard was Ethernet, especially version 2 defined by the combination of Digital Equipment Corporation, Intel and Xerox. This is sometimes called DIX after the sponsors. The most common basic implementation used coaxial cable, at distances up to 500 meters, and at a data rate of 10 megabits per second (Mbps). See the Ethernet for more of the physical details. The key co-developers of DIX Ethernet were Robert Metcalfe and David Boggs. Unfortunately, "Ethernet" has become an extremely generic term, which may only mean that one of the computer-to-LAN connectors used by one of the LAN standards is in use. Beyond that connector, there may well be a wide area network running for thousands of kilometers, or even into deep space. In addition to the connector, the frames, or units of data put onto the medium, often follow several standards developed for Ethernet variants.
LAN specifications involve several protocol (computer|protocol layers. In the Internet Protocol Suite architecture, the various layers are grouped as "interface protocols" over which Internet Protocol, which is "agnostic" to the transmission system, runs. While LANs do not completely fit the Open Systems Interconnection Reference Model, most of their functions are at layer 1 (physical) and layer 2 (data link). The DIX specifications were given to the Institute for Electrical and Electronic Engineers, a recognized standardization body. IEEE created Project 802 on Local Area Networks; the number comes from the date of its creation in February 1980. There were some competing, or perhaps complementary, alternatives to Ethernet.
In response, IEEE initially created several committees some usable with all the alternatives, and some bringing standardization to alternatives designed by different companies:
Virtual local area networkVirtual local area network (VLAN) techniques, standardized by the IEEE 802.1q working group, allow independent LANs to share the same physical media. While they still physically coexist and need to follow common MAC rules to avoid mutual interference, in a typical installation, an end user will only be able to participate in a limited number of the LANs, such as one for data and one for Voice over Internet Protocol (VoIP). It is more common to see a large number of non-interfering VLANs on cables in the infrastructure of a building or campus network. Wireless LAN standardsThere are a long list of other Project 802 projects, many beyond the scope of this discussion. Two important ones include;
It must be understood that while cellular telephony may indeed provide wireless data communications, it uses a signficantly different set of technologies, intended not for multiple computer interaction but the basic two-party model of telephone communications. Cellular telephony is a wireless extension of telephone networking. References
|