File:Penplot.jpg
Original file (1,266 × 2,100 pixels, file size: 240 KB, MIME type: image/jpeg)
Summary
Title / Description
|
plot of the natural pension , id set, pentation to base , id set, pentation to base ; the thik black curve shows ; the thik black curve shows .
The thin curves show the two asymptotics of pentation and the error of the linear approximation |
---|---|
Citizendium author & Copyright holder
|
Copyright © Dmitrii Kouznetsov. See below for licence/re-use information. |
Date created
|
2014 |
Country of first publication
|
Japan, Germany |
Notes
|
Pentation is described at TORI, http://mizugadro.mydns.jp/t/index.php/Pentation and also (In Russian) in the book [1] |
Other versions
|
The image is borrowed from TORI, http://mizugadro.mydns.jp/t/index.php/File:Penplot.jpg |
Using this image on CZ
|
| , then copy the code below to add this image to a Citizendium article, changing the size, alignment, and caption as necessary.
Please send email to manager A T citizendium.org .
Licensing
This media, Penplot.jpg, is licenced under the Creative Commons Attribution 3.0 Unported License
You are free:
To Share — To copy, distribute and transmit the work; To Remix — To adapt the work.
Under the following conditions:
Attribution — You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
For any reuse or distribution, you must make clear to others the licence terms of this work (the best way to do this is with a link to this licence's web page). Any of the above conditions can be waived if you get permission from the copyright holder. Nothing in this licence impairs or restricts the author's moral rights.
Read the full licence.
Description
Pentation pen is superfunction of tetration to the same base. Natural pentation is solution of the transfer equation
constructed with regular iteration at the smallest real fixed point of tetration; is solution of equation
with additional condition .
The real-real plot is shown with thick black curve.
The thin curves show approximations of pentation.
The red horizontal line shows the fixed point of tetration, .
The thin blue curve shows the asymptotic of pentation at large negative values of the real part of the argument,
where
and
The thin green line shown the deviation from the linear approximation
The deviation is denoted as
In the range , the deviation is small, the linear approximation provides 2 correct significant digits. In order to make the deviation visible, it is scaled with factor 10, so, is plotted.
Properties of tetration are described in publications [2]
The regular iteration in construction of superfunction is described at TORI, http://mizugadro.mydns.jp/t/index.php/Regular_iteration and also in [3][4][5].
C++ generator of curves
#include <math.h> #include <stdio.h> #include <stdlib.h> #define DB double #define DO(x,y) for(x=0;x<y;x++) #include <complex> typedef std::complex<double> z_type; #define Re(x) x.real() #define Im(x) x.imag() #define I z_type(0.,1.) #include "ado.cin" #include "fsexp.cin" #include "fslog.cin" z_type pen0(z_type z){ DB Lp=-1.8503545290271812; DB k,a,b; k=1.86573322821; a=-.6263241; b=0.4827; z_type e=exp(k*z); return Lp + e*(1.+e*(a+b*e)); } z_type pen7(z_type z){ DB x; int m,n; z=pen0(z+(2.24817451898-7.)); DO(n,7) { if(Re(z)>8.) return 999.; z=FSEXP(z); if(abs(z)<40) goto L1; return 999.; L1: ;} return z; } z_type pen(z_type z){ DB x; int m,n; x=Re(z); if(x<= -4.) return pen0(z); m=int(x+5.); z-=DB(m); z=pen0(z); DO(n,m) z=FSEXP(z); return z; } int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd; FILE *o;o=fopen("penplo.eps","w"); ado(o,608,1008); fprintf(o,"404 204 translate\n 100 100 scale\n"); #define M(x,y) fprintf(o,"%8.4f %8.4f M\n",0.+x,0.+y); #define L(x,y) fprintf(o,"%8.4f %8.4f L\n",0.+x,0.+y); for(m=-4;m<3;m++) {M(m,-2)L(m,8)} for(n=-2;n<11;n++) {M( -4,n)L(2,n)} fprintf(o,"2 setlinecap 1 setlinejoin .004 W 0 0 0 RGB S\n"); DO(n,150){x=-4+.04*n;y=Re(pen7(x)); if(n==0) M(x,y)else L(x,y); if(y>8.)break;} fprintf(o,".02 W 0 0 0 RGB S\n"); DO(n,150){x=-2.2+.04*n;y=10.*(Re(pen7(x))-(1.+x)); if(n==0) M(x,y)else L(x,y); if(y>.3)break;} fprintf(o,".01 W 0 .5 0 RGB S\n"); DB L=-1.8503545290271812; DB K=1.86573322821; DB a=-.6263241; DB b=0.4827; DO(n,80){x=-4.+.04*n; DB e=exp(K*(x+2.24817451898)); y=L+e; if(n==0) M(x,y) else L(x,y); if(y>8.) break;} fprintf(o,".01 W 0 0 1 RGB S\n"); M(-4,L)L(0,L) fprintf(o,".01 W 1 0 0 RGB S\n"); DB t2=M_PI/1.86573322821; DB tx=-2.32; fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); printf("pen7(-1)=%18.14f\n", Re(pen7(-1.))); printf("Pi/1.86573322821=%18.14f %18.14f\n", M_PI/1.86573322821, 2*M_PI/1.86573322821); system("epstopdf penplo.eps"); system( "open penplo.pdf"); }
Latex generator of labels
\documentclass[12pt]{article} \paperwidth 608px \paperheight 1008px \textwidth 1394px \textheight 1300px \topmargin -104px \oddsidemargin -90px \usepackage{graphics} \usepackage{rotating} \newcommand \sx {\scalebox} \newcommand \rot {\begin{rotate}} \newcommand \ero {\end{rotate}} \newcommand \ing {\includegraphics} \newcommand \rmi {\mathrm{i}} \begin{document} {\begin{picture}(608,1008) \put(0,0){\ing{penplo}} \put(377,994){\sx{3.2}{$y$}} \put(377,895){\sx{3.2}{$7$}} \put(377,795){\sx{3.2}{$6$}} \put(377,695){\sx{3.2}{$5$}} \put(377,594){\sx{3.2}{$4$}} \put(377,494){\sx{3.2}{$3$}} \put(377,394){\sx{3.2}{$2$}} \put(377,294){\sx{3.2}{$1$}} \put(377,194){\sx{3.2}{$0$}} \put(358, 93){\sx{3.2}{$-1$}} \put(80,174){\sx{3.2}{$-3$}} \put(180,174){\sx{3.2}{$-2$}} \put(280,174){\sx{3.2}{$-1$}} \put(396,174){\sx{3.2}{$0$}} \put(496,174){\sx{3.2}{$1$}} \put(590,174){\sx{3.2}{$x$}} \put(242,406){\sx{3.6}{\rot{85}$y\!=\!L+\exp(k(x\!+\!x_1))$\ero}} \put(446,370){\sx{3.9}{\rot{70}$y\!=\!\mathrm{pen}(x)$\ero}} \put(8,236){\sx{3.3}{$y=10\,\delta(x)$}} \put(312, 9){\sx{3.2}{$y\!=\!L$}} \end{picture} \end{document}
References
- ↑
https://www.morebooks.de/store/ru/book/Суперфункции/isbn/978-3-659-56202-0
http://www.ils.uec.ac.jp/~dima/BOOK/202.pdf
http://mizugadro.mydns.jp/BOOK/202.pdf Д.Кузнецов. Суперфункции. Lambert Academic Publishing, 2014. (In Russian), page 268, Figure 19.3. - ↑ http://www.ams.org/mcom/2009-78-267/S0025-5718-09-02188-7/home.html http://www.ils.uec.ac.jp/~dima/PAPERS/2009analuxpRepri.pdf http://mizugadro.mydns.jp/PAPERS/2009analuxpRepri.pdf D.Kouznetsov. (2009). Solution of F(z+1)=exp(F(z)) in the complex z-plane. Mathematics of Computation, 78: 1647-1670. DOI:10.1090/S0025-5718-09-02188-7.
- ↑ http://www.ams.org/journals/mcom/2010-79-271/S0025-5718-10-02342-2/home.html D.Kouznetsov, H.Trappmann. Portrait of the four regular super-exponentials to base sqrt(2). Mathematics of Computation, 2010, v.79, p.1727-1756.
- ↑ http://www.springerlink.com/content/qt31671237421111/fulltext.pdf?page=1 D.Kouznetsov, H.Trappmann. Superfunctions and square root of factorial. Moscow University Physics Bulletin, 2010, v.65, No.1, p.6-12.
- ↑ http://www.springerlink.com/content/u712vtp4122544x4 D.Kouznetsov. Holomorphic extension of the logistic sequence. Moscow University Physics Bulletin, 2010, No.2, p.91-98. http://tori.ils.uec.ac.jp/2012OR/2012or.pdf D. Kouznetsov. Superfunctions for optical amplifiers. Preprint ILS UEC, 2012
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 18:52, 11 March 2022 | 1,266 × 2,100 (240 KB) | Maintenance script (talk | contribs) | == Summary == Importing file |
You cannot overwrite this file.
File usage
The following page uses this file: