Green's function

From Citizendium
Revision as of 06:58, 8 January 2009 by imported>Paul Wormer (saved without checking LaTeX (processor down))
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

In physics and mathematics, Green's function is an auxiliary function in the solution of linear partial differential equations. The function is named for the British mathematician George Green (1793 – 1841)

Let Lx be a given linear differential operator in n variables x = (x1, x2, ..., xn), then the Green function of Lx is the function G(x,y) defined by

where δ(x-y) is the Dirac delta function. Once G(x,y) is known, any differential equation involving Lx is formally solved,

The proof is by verification,

where in the last step the defining property of the Dirac delta function is used.