Pole (complex analysis)
Jump to navigation
Jump to search
In complex analysis, a pole is a type of singularity of a function of a complex variable. In the neighbourhood of a pole, the function behave like a negative power.
A function f has a pole of order k, where k is a positive integer, with (non-zero) residue r at a point a if the limit
- .
The pole is an isolated singularity if there is a neighbourhood of a in which f is holomorphic except at a. In this case the function has a Laurent series in a neighbourhood of a, so that f is expressible as a power series
where the leading coefficient .
An isolated singularity may be either removable, a pole, or an essential singularity.