Erdős–Fuchs theorem

From Citizendium
Revision as of 14:20, 29 October 2008 by imported>Richard Pinch (New article, my own wording from Wikipedia)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

In mathematics, in the area of combinatorial number theory, the Erdős–Fuchs theorem is a statement about the number of ways that numbers can be represented as a sum of two elements of a given set, stating that the average order of this number cannot be close to being a linear function.

The theorem is named after Paul Erdős and Wolfgang Heinrich Johannes Fuchs.

Statement

Let A be a subset of the natural numbers and r(n) denote the number of ways that a natural number n can be expressed as the sum of two elements of A (taking order into account). We consider the average

The theorem states that

cannot hold unless C=0.


References

  • P. Erdős; W.H.J. Fuchs (1956). "On a Problem of Additive Number Theory". Journal of the London Mathematical Society 31 (1): 67-73.

Template:Numtheory-stub