Szpiro's conjecture

From Citizendium
Revision as of 15:19, 11 January 2013 by imported>Richard Pinch (Szpiro (1987))
Jump to navigation Jump to search
This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In number theory, Szpiro's conjecture concerns a relationship between the conductor and the discriminant of an elliptic curve. In a general form, it is equivalent to the well-known ABC conjecture. It is named for Lucien Szpiro who formulated it in the 1980s.

The conjecture states that: given ε > 0, there exists a constant C(ε) such that for any elliptic curve E defined over Q with minimal discriminant Δ and conductor f, we have

The modified Szpiro conjecture states that: given ε > 0, there exists a constant C(ε) such that for any elliptic curve E defined over Q with invariants c4, c6 and conductor f, we have


References

  • S. Lang (1997). Survey of Diophantine geometry. Springer-Verlag, 51. ISBN 3-540-61223-8. 
  • L. Szpiro (1981). "Seminaire sur les pinceaux des courbes de genre au moins deux". Astérisque 86 (3): 44-78.
  • L. Szpiro (1987). "Présentation de la théorie d'Arakelov". Contemp. Math. 67: 279-293.


External links