Scheme (mathematics)

From Citizendium
Revision as of 16:51, 23 December 2007 by imported>David E. Volk (Scheme moved to Scheme (Mathematics): there will be other schemes, like con games, gramatical, etc)
Jump to navigation Jump to search

The theory of schemes was pioneered by Alexander Grothendieck. The foundations of scheme theory were initially organized in Grothendieck's multi-volume work Éléments de Géométrie Algébrique with the assistance of Jean Dieudonné.

Roughly speaking, a scheme is a topological space which is locally affine; that is, a scheme has the local structure of the so-called affine schemes, i.e. of spectra of rings endowed with Zariski topologies.

The Category of Schemes

A scheme consists of a topological space together with a sheaf of rings (called the structural sheaf on ) such that every point of has an open neighborhood such that the locally ringed space is isomorphic to an affine scheme.

Projective Schemes constitute an important class of schemes, especially for the study of curves.

The category of schemes is defined by taking morphisms of schemes to be morphisms of locally ringed spaces. Many kinds of morphisms of schemes are characterized affine-locally, in the sense that

Gluing Properties

The notion of "gluing" is one of the central ideas in the theory of schemes.

Morphisms of Schemes