Talk:Compact space
Jump to navigation
Jump to search
Compact set vs compact space
Don't you think this article should be rather a subsection in more general compact space? Wojciech Świderski 05:28, 12 July 2008 (CDT)
- The terms compact set and compact space mean almost the same to me. Could you please explain the difference? -- Jitse Niesen 09:33, 12 July 2008 (CDT)
- In general, a compact set is part of surrounding topological space that may not be compact - as closed and bounded subsets of R^n. Compact space is "compact in itself" - we don't think of it as of part of something greater. Compact manifold is a good example - if you don't consider it as embedded in anything else. See: [1] Wojciech Świderski 03:10, 13 July 2008 (CDT)