Talk:Computer/Applications

From Citizendium
< Talk:Computer
Revision as of 13:12, 27 June 2024 by Pat Palmer (talk | contribs) (Text replacement - "artillery" to "artillery")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

This is a temporary archive hanging off of Talk:Computer and removed from Computer.

Part of this belongs in history of computing.

Computer applications== ==Computer History

before eniac the brits had their own electronic calculator it was recently reproduced based upon notes and info.

The first digital computers, with their large size and cost, mainly performed scientific calculations, often to support military objectives. The ENIAC was originally designed to calculate ballistics-firing tables for artillery, but it was also used to calculate neutron cross-sectional densities to help in the design of the hydrogen bomb[1] significantly speeding up its development. (Many of the most powerful supercomputers available today are also used for nuclear weapons simulations.) The CSIR Mk I, the first Australian stored-program computer, was amongst many other tasks used for the evaluation of rainfall patterns for the catchment area of the Snowy Mountains Scheme, a large hydroelectric generation project[2] Others were used in cryptanalysis, for example the first programmable (though not general-purpose) digital electronic computer, Colossus, built in 1943 during World War II. Despite this early focus of scientific and military engineering applications, computers were quickly used in other areas.

From the beginning, stored program computers were applied to business problems. The LEO, a stored program-computer built by J. Lyons and Co. in the United Kingdom, was operational and being used for inventory management and other purposes 3 years before IBM built their first commercial stored-program computer. Continual reductions in the cost and size of computers saw them adopted by ever-smaller organizations. Moreover, with the invention of the microprocessor in the 1970s, it became possible to produce inexpensive computers. In the 1980s, personal computers became popular for many tasks, including book-keeping, writing and printing documents, calculating forecasts and other repetitive mathematical tasks involving spreadsheets.

As computers have become less expensive, they have been used extensively in the creative arts as well. Sound, still pictures, and video are now routinely created (through synthesizers, computer graphics and computer animation), and near-universally edited by computer. They have also been used for entertainment, with the video game becoming a huge industry.

Computers have been used to control mechanical devices since they became small and cheap enough to do so; indeed, a major spur for integrated circuit technology was building a computer small enough to guide the Apollo missions[3][4] two of the first major applications for embedded computers. Today, it is almost rarer to find a powered mechanical device not controlled by a computer than to find one that is at least partly so. Perhaps the most famous computer-controlled mechanical devices are robots, machines with more-or-less human appearance and some subset of their capabilities. Industrial robots have become commonplace in mass production, but general-purpose human-like robots have not lived up to the promise of their fictional counterparts and remain either toys or research projects.

Robotics, indeed, is the physical expression of the field of artificial intelligence, a discipline whose exact boundaries are fuzzy but to some degree involves attempting to give computers capabilities that they do not currently possess but humans do. Over the years, methods have been developed to allow computers to do things previously regarded as the exclusive domain of humans — for instance, "read" handwriting, play chess, or perform symbolic integration. However, progress on creating a computer that exhibits "general" intelligence comparable to a human has been extremely slow.

Networking and the Internet

Computers have been used to coordinate information in multiple locations since the 1950s, with the US military's SAGE system the first large-scale example of such a system, which led to a number of special-purpose commercial systems like Sabre.

In the 1970s, computer engineers at research institutions throughout the US began to link their computers together using telecommunications technology. This effort was funded by ARPA, and the computer network that it produced was called the ARPANET. The technologies that made the Arpanet possible spread and evolved. In time, the network spread beyond academic and military institutions and became known as the Internet. The emergence of networking involved a redefinition of the nature and boundaries of the computer. In the phrase of John Gage and Bill Joy (of Sun Microsystems), "the network is the computer". Computer operating systems and applications were modified to include the ability to define and access the resources of other computers on the network, such as peripheral devices, stored information, and the like, as extensions of the resources of an individual computer. Initially these facilities were available primarily to people working in high-tech environments, but in the 1990s the spread of applications like email and the World Wide Web, combined with the development of cheap, fast networking technologies like Ethernet and ADSL saw computer networking become ubiquitous almost everywhere. In fact, the number of computers that are networked is growing phenomenally. A very large proportion of personal computers regularly connect to the Internet to communicate and receive information.[5] "Wireless" networking, often utilizing mobile phone networks, has meant networking is becoming increasingly ubiquitous even in mobile computing environments. Wi-Fi is also a popular application, involving the wireless transfer of data through the internet. Wi-Fi is commonly used with laptops and can even be used with modern video game consoles.

  1. Classical Super / Runaway Super. Globalsecurity.org (Unknown). Retrieved on 2006-04-05.
  2. The last of the first : CSIRAC : Australia's first computer, Doug McCann and Peter Thorne, ISBN 0-7340-2024-4.
  3. Brown, Alexander (August 22, 2002). Integrated Circuits in the Apollo Guidance Computer. Retrieved on 2006-04-05.
  4. Technological Innovation and the ICBM. Smithsonian Institution (Unknown). Retrieved on 2006-04-05.
  5. North America Internet Usage Stats. Internet World Stats (April 3, 2006). Retrieved on 2006-04-05.