Genus-degree formula: Difference between revisions
Jump to navigation
Jump to search
imported>Meg Taylor m (spelling: forumla -> formula) |
mNo edit summary |
||
Line 12: | Line 12: | ||
{{reflist}} | {{reflist}} | ||
* Arbarello, Cornalba, Griffiths, Harris. Geometry of algebraic curves. vol 1 Springer, ISBN 0387909974, appendix A. | * Arbarello, Cornalba, Griffiths, Harris. Geometry of algebraic curves. vol 1 Springer, ISBN 0387909974, appendix A. | ||
* Grffiths and Harris, Principles of algebraic geometry, Wiley, ISBN 0-471-05059-8, chapter 2, section 1 | * Grffiths and Harris, Principles of algebraic geometry, Wiley, ISBN 0-471-05059-8, chapter 2, section 1[[Category:Suggestion Bot Tag]] |
Latest revision as of 06:00, 21 August 2024
In classical algebraic geometry, the genus-degree formula relates the degree of a non-singular plane curve with its arithmetic genus via the formula:
A singularity of order r decreases the genus by .[1]
Proofs
The proof follows immediately from the adjunction formula. For a classical proof see the book of Arbarello, Cornalba, Griffiths and Harris.
References
- ↑ Semple and Roth, Introduction to Algebraic Geometry, Oxford University Press (repr.1985) ISBN 0-19-85336-2. Pp.53-54
- Arbarello, Cornalba, Griffiths, Harris. Geometry of algebraic curves. vol 1 Springer, ISBN 0387909974, appendix A.
- Grffiths and Harris, Principles of algebraic geometry, Wiley, ISBN 0-471-05059-8, chapter 2, section 1