HUBO: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Chunbum Park
imported>Chunbum Park
Line 11: Line 11:
The KHR-1 was completed in January of 2002. Except for its lacking two hands and a head, it roughly resembles a human in terms of shape and movement, which includes walking at 0.8km/hr with the ability to turn to the right.<ref name="ohdesignkhr22004"/>  
The KHR-1 was completed in January of 2002. Except for its lacking two hands and a head, it roughly resembles a human in terms of shape and movement, which includes walking at 0.8km/hr with the ability to turn to the right.<ref name="ohdesignkhr22004"/>  
For its walking to be autonomous, the prototype was made to run on internal batteries and without external connection, consuming less than 100W during standby and around 150~240W when walking. Since humanoid robots in the future would mostly be used for entertainment and service, the KHR-1 has a child-like height of approximately 119&nbsp;cm,<ref name="KHR1specs">[http://hubolab.kaist.ac.kr/KHR-1.php Introduction of KHR-1], Hubo Lab. Date accessed: 2009-02-20.</ref> and weighs 48&nbsp;kg. KHR-1 was built with the goal of achieving real-time motion control of bipedal walking, as in humans, based on sensory feedback. This is different from bipedal walking as a playback motion obtained from an offline learning process, and also with partial online adjustments. It has 22 [[degrees of freedom (mechanics)|DOF]]s (degrees of freedom) - 12 for the lower limbs, 8 for the arms, and 2 for the waist. The DOFs of different axes in the joints of shoulders, waist, hips, and ankles were merged into intersections in order to attain a simple, [[closed-form solution|closed-form]] solution (that is comprised of well-known mathematical [[function (mathematics)|functions]]) of [[inverse kinematics]], the computation of the robot's movements. All the joints were built with [[harmonic drive]]s for zero [[backlash (engineering)|backlash]] and light, compact design. The KHR-1's walking movement is based on the [[Zero Moment Point]] trajectory (points of contact on the ground where the total moment of inertia of the active forces equals to 0) that is calculated with a simple model of the robot.<ref name="ohdevelopkhr12002">Oh, et al, "Development of a Humanoid Biped Walking Robot Platform KHR-1 - Initial Design and Its Performance Evaluation," 2002.</ref>  
For its walking to be autonomous, the prototype was made to run on internal batteries and without external connection, consuming less than 100W during standby and around 150~240W when walking. Since humanoid robots in the future would mostly be used for entertainment and service, the KHR-1 has a child-like height of approximately 119&nbsp;cm,<ref name="KHR1specs">[http://hubolab.kaist.ac.kr/KHR-1.php Introduction of KHR-1], Hubo Lab. Date accessed: 2009-02-20.</ref> and weighs 48&nbsp;kg. KHR-1 was built with the goal of achieving real-time motion control of bipedal walking, as in humans, based on sensory feedback. This is different from bipedal walking as a playback motion obtained from an offline learning process, and also with partial online adjustments. It has 22 [[degrees of freedom (mechanics)|DOF]]s (degrees of freedom) - 12 for the lower limbs, 8 for the arms, and 2 for the waist. The DOFs of different axes in the joints of shoulders, waist, hips, and ankles were merged into intersections in order to attain a simple, [[closed-form solution|closed-form]] solution (that is comprised of well-known mathematical [[function (mathematics)|functions]]) of [[inverse kinematics]], the computation of the robot's movements. All the joints were built with [[harmonic drive]]s for zero [[backlash (engineering)|backlash]] and light, compact design. The KHR-1's walking movement is based on the [[Zero Moment Point]] trajectory (points of contact on the ground where the total moment of inertia of the active forces equals to 0) that is calculated with a simple model of the robot.<ref name="ohdevelopkhr12002">Oh, et al, "Development of a Humanoid Biped Walking Robot Platform KHR-1 - Initial Design and Its Performance Evaluation," 2002.</ref>  
The KHR-2 was begun in early 2003 and was complete by the beginning of 2004.<ref name="KHR2specs">[http://hubolab.co.kr/KHR-2.php Introduction of KHR-2], Hubo Lab. Date accessed: 2009-03-09.</ref>


===notes===
===notes===
{{reflist}}
{{reflist}}

Revision as of 11:55, 9 March 2009

The status or A editor fields in the metadata template are either incorrect or absent.
  • If the article has been approved please add the approving editor to the A editor field.
  • Otherwise, please change the status from 0"" to an appropriate value between 1 and 4 in the metadata template.

Please update the metadata template here
This article has a Citable Version.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
Catalogs [?]
Gallery [?]
Video [?]
 
This editable Main Article has an approved citable version (see its Citable Version subpage). While we have done conscientious work, we cannot guarantee that this Main Article, or its citable version, is wholly free of mistakes. By helping to improve this editable Main Article, you will help the process of generating a new, improved citable version.
(CC) Photo: Min Lee
Albert HUBO.

HUBO is a humanoid robot developed at the Korea Advanced Institute of Science and Technology. The first HUBO, KHR-3, was the culmination of 4 years of research based on three earlier prototypes, KHR-0, 1, and 2, and it was officially unveiled to the public in January 6 of 2005.[1] KHR-3 is physically similar to Honda's ASIMO, weighing 56 kg and standing at a height of 125 cm.[2] Albert HUBO is the second and latest HUBO that features an artificial head of Albert Einstein in place of the previous design resembling a CRT monitor. The name HUBO is short for humanoid robot.[3]

Development History

The first HUBO was developed by mechanical engineering professor Oh Junho and his Ph.D. student team over the course of about 20 years. During much of this time, they worked to secure the necessary technologies, including design and manufacturing, without relying on experts. Their amateur approach resulted in a very low development cost of about $500,000 compared to the $300 million that Honda had spent on ASIMO at the time when KHR-3 was completed.[4]

KHR-0 (KAIST Humanoid Robot) was built in 2001 for the purpose of investigating the specifications of actuators (device that receives electric signal and performs mechanical action), such as power, torque, and speed, and the optimal weight and size of a humanoid robot.[5] Unlike its descendants, KHR-0 is not a humanoid robot because it only consists of two legs and lacks the entire upper body, which would be introduced in KHR-1.[6]

(GNU) Image: Laurens van Lieshout
Harmonic drive.

The KHR-1 was completed in January of 2002. Except for its lacking two hands and a head, it roughly resembles a human in terms of shape and movement, which includes walking at 0.8km/hr with the ability to turn to the right.[5] For its walking to be autonomous, the prototype was made to run on internal batteries and without external connection, consuming less than 100W during standby and around 150~240W when walking. Since humanoid robots in the future would mostly be used for entertainment and service, the KHR-1 has a child-like height of approximately 119 cm,[7] and weighs 48 kg. KHR-1 was built with the goal of achieving real-time motion control of bipedal walking, as in humans, based on sensory feedback. This is different from bipedal walking as a playback motion obtained from an offline learning process, and also with partial online adjustments. It has 22 DOFs (degrees of freedom) - 12 for the lower limbs, 8 for the arms, and 2 for the waist. The DOFs of different axes in the joints of shoulders, waist, hips, and ankles were merged into intersections in order to attain a simple, closed-form solution (that is comprised of well-known mathematical functions) of inverse kinematics, the computation of the robot's movements. All the joints were built with harmonic drives for zero backlash and light, compact design. The KHR-1's walking movement is based on the Zero Moment Point trajectory (points of contact on the ground where the total moment of inertia of the active forces equals to 0) that is calculated with a simple model of the robot.[8]

The KHR-2 was begun in early 2003 and was complete by the beginning of 2004.[9]

notes

  1. Birth of Korean Humanoid Robot Marks Brilliance Advance in Korea Robotics, Chosun Ilbo. 2004-12-22.
  2. Specification of KHR-3 (HUBO), Hubo Lab. Date accessed: 2009-02-24.
  3. Specification of Albert HUBO, Hubo Lab. Date accessed: 2009-02-24.
  4. Korean Robotics Steps Into the Future, Lee Sung Kyu and Todd Thacker, OhmyNews International. 2005-01-18.
  5. 5.0 5.1 Oh, et al, "Design and Walking Control of the Humanoid Robot, KHR-2(KAIST Humanoid Robot - 2)," 2004.
  6. Oh, et al, "Mechanical Design of the Humanoid Robot Platform, HUBO," 2007.
  7. Introduction of KHR-1, Hubo Lab. Date accessed: 2009-02-20.
  8. Oh, et al, "Development of a Humanoid Biped Walking Robot Platform KHR-1 - Initial Design and Its Performance Evaluation," 2002.
  9. Introduction of KHR-2, Hubo Lab. Date accessed: 2009-03-09.