Incentre: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Richard Pinch
(removing self-redirects; restoring anchors)
imported>Caesar Schinas
m (Bot: Update image code)
Line 1: Line 1:
{{subpages}}
{{subpages}}
[[Image:Incircle.png|right|thumb|350px|Dashed lines are bisectors of the respective angles, red circle is the incircle with incentre M.]]
{{Image|Incircle.png|right|350px|Dashed lines are bisectors of the respective angles, red circle is the incircle with incentre M.}}
In [[triangle geometry]], the '''incentre''' of a triangle is the centre of the '''incircle''', a [[circle]] which is within the [[triangle]] and [[tangent]] to its three sides.  It is the common intersection of the three angle bisectors, which form a [[Cevian line]] system.  The '''contact triangle''' has as vertices the three points of contact of the incircle with the three sides: it is the [[pedal triangle]] to the incentre.  The '''inradius''' is the radius of the incircle: the area of the triangle is equal to the product of the inradius and the [[semi-perimeter]].  The incircle is tangent to the [[nine-point circle]].   
In [[triangle geometry]], the '''incentre''' of a triangle is the centre of the '''incircle''', a [[circle]] which is within the [[triangle]] and [[tangent]] to its three sides.  It is the common intersection of the three angle bisectors, which form a [[Cevian line]] system.  The '''contact triangle''' has as vertices the three points of contact of the incircle with the three sides: it is the [[pedal triangle]] to the incentre.  The '''inradius''' is the radius of the incircle: the area of the triangle is equal to the product of the inradius and the [[semi-perimeter]].  The incircle is tangent to the [[nine-point circle]].   



Revision as of 11:27, 11 June 2009

This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.
CC Image
Dashed lines are bisectors of the respective angles, red circle is the incircle with incentre M.

In triangle geometry, the incentre of a triangle is the centre of the incircle, a circle which is within the triangle and tangent to its three sides. It is the common intersection of the three angle bisectors, which form a Cevian line system. The contact triangle has as vertices the three points of contact of the incircle with the three sides: it is the pedal triangle to the incentre. The inradius is the radius of the incircle: the area of the triangle is equal to the product of the inradius and the semi-perimeter. The incircle is tangent to the nine-point circle.

More generally, if a polygon has a single interior circle tangent to all its sides, this is the incircle of the polygon and the centre of the incircle is the incentre.

A circum quadrilateral is a quadrilateral with an inscribed circle. The condition for a quadrilateral to have an incircle is that the sums of the lengths of the pairs of opposite sides should be equal.