User:Richard Pinch/References: Difference between revisions
Jump to navigation
Jump to search
imported>Richard Pinch (added Priestley) |
imported>Richard Pinch (added Howie) |
||
Line 34: | Line 34: | ||
* {{cite book | title=Diophantine geometry | author=Marc Hindry | coauthors=Silverman, Joseph H. | series= [[Graduate Texts in Mathematics]] | volume=201 | publisher=Springer-Verlag | year=2000 | isbn=0-387-98981-1 }} | * {{cite book | title=Diophantine geometry | author=Marc Hindry | coauthors=Silverman, Joseph H. | series= [[Graduate Texts in Mathematics]] | volume=201 | publisher=Springer-Verlag | year=2000 | isbn=0-387-98981-1 }} | ||
* {{citation | author=John G. Hocking | couathors=Gail S. Young | title=Topology | publisher=Dover Publications | year=1988 | isbn=0-486-65676-4 }} | * {{citation | author=John G. Hocking | couathors=Gail S. Young | title=Topology | publisher=Dover Publications | year=1988 | isbn=0-486-65676-4 }} | ||
* {{cite book | | * {{cite book | author=Christopher Hooley | authorlink=Christopher Hooley | title=Applications of sieve methods to the theory of numbers | publisher=Cambridge University Press | date=1976 | isbn=0-521-20915-3}} | ||
* {{cite book | author=John M. Howie | title=Fundamentals of Semigroup Theory | publisher=[[Oxford University Press]] | year=1995 | isbn=0-19-851194-9 }} | |||
* {{cite book | author=James E. Humphreys | title=Introduction to Lie algebras and representation theory | series=[[Graduate Texts in Mathematics]] | volume=9 | publisher=[[Springer-Verlag]] | year=1972 | isbn=0-387-90052-7}} | * {{cite book | author=James E. Humphreys | title=Introduction to Lie algebras and representation theory | series=[[Graduate Texts in Mathematics]] | volume=9 | publisher=[[Springer-Verlag]] | year=1972 | isbn=0-387-90052-7}} | ||
* {{cite book | author=K. Ireland | coauthors=M. Rosen | title = A Classical Introduction to Modern Number Theory | publisher = Springer-Verlag | date = 1993 | location = New York, New York | isbn = 0-387-97329-X}} | * {{cite book | author=K. Ireland | coauthors=M. Rosen | title = A Classical Introduction to Modern Number Theory | publisher = Springer-Verlag | date = 1993 | location = New York, New York | isbn = 0-387-97329-X}} |
Revision as of 15:08, 13 November 2008
- Iain T. Adamson (1972). Elementary rings and modules. Oliver and Boyd. ISBN 0-05-002192-3.
- Alperin, J.L.; Rowen B. Bell (1995). Groups and Representations. Springer-Verlag. ISBN 0-387-94526-1.
- Tom M. Apostol (1976). Introduction to Analytic Number Theory. Springer-Verlag. ISBN 0-387-90163-9.
- Tom M. Apostol (1974). Mathematical Analysis, 2nd ed. Addison-Wesley.
- Emil Artin; John Tate (1967). Class field theory. W.A. Benjamin. ISBN 0-8053-0291-3.
- Alan F. Beardon (1979). Complex Analysis. John Wiley. ISBN 0-471-99672-6.
- M.J. Bertin; A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse, J.P. Schreiber (1992). Pisot and Salem Numbers. Birkhäuser. ISBN 3764326484.
- Peter Borwein (2002). Computational Excursions in Analysis and Number Theory. Springer-Verlag. ISBN 0-387-95444-9.
- Duncan Buell (1989). Binary quadratic forms: classical theory and modern computations. Springer-Verlag. ISBN 0-387-97037-1.
- J.C. Burkill (1962). A first course in Mathematical Analysis. Cambridge University Press. ISBN 0-521-29468-1.
- J.W.S. Cassels (1957). An introduction to Diophantine approximation. Cambridge University Press.
- Alina Carmen Cojocaru; M. Ram Murty. An introduction to sieve methods and their applications. Cambridge University Press. ISBN 0-521-61275-6.
- Cornell, Gary; Silverman, Joseph H. (1986). Arithmetic geometry. New York: Springer-Verlag. ISBN 0387963111.
- Richard E. Crandall; Carl Pomerance (2001). Prime Numbers: A Computational Perspective. Springer-Verlag. ISBN 0-387-94777-9.
- Keith J. Devlin (1979). Fundamentals of Contemporary Set Theory. Springer-Verlag. ISBN 0-387-90441-7.
- L. E. Dickson (1919, repr.1971). History of the Theory of Numbers I. Chelsea. ISBN 0-8284-0086-5.
- Harold N. Edwards (1974). Riemann's Zeta Function. Academic Press. ISBN 0-12-232750-0.
- Graham Everest; Alf van der Poorten, Igor Shparlinksi, Thomas Ward (2003). Recurrence sequences. American Mathematical Society. ISBN 0-8218-3387-1.
- Wolfgang Franz (1967). General Topology. Harrap.
- William Fulton (1974). Algebraic Curves. W.A. Benjamin. ISBN 0-8053-3081-4.
- William Fulton; Joe Harris (1991). Representation theory: A first course. Springer-Verlag. ISBN 0-387-97495-4.
- Greaves, George (2001). Sieves in number theory. Springer-Verlag. ISBN 3-540-41647-1.
- Phillip A. Griffith (1970). Infinite Abelian group theory. University of Chicago Press. ISBN 0-226-30870-7.
- P. Griffiths; J. Harris (1994). Principles of Algebraic Geometry. Wiley Interscience. ISBN 0-471-05059-8.
- Richard K. Guy (2004). Unsolved Problems in Number Theory. Springer-Verlag. ISBN 0-387-20860-7.
- H. Halberstam; H.E. Richert (1974). Sieve Methods. Academic Press. ISBN 0-12-318250-6.
- Marshall Hall jr (1959). The theory of groups. New York: Macmillan.
- Paul Halmos (1960). Naive set theory. Van Nostrand Reinhold.
- G.H. Hardy; E. M. Wright (2008). An Introduction to the Theory of Numbers, 6th ed.. Oxford University Press. ISBN 0-19-921986-5.
- B. Hartley; T.O. Hawkes (1970). Rings, modules and linear algebra. Chapman and Hall. ISBN 0-412-09810-5.
- Robin Hartshorne (1977). Algebraic Geometry. ISBN 0-387-90244-9.
- Dennis A. Hejhal; Joel Friedman, Martin C. Gutzwiller, Andrew M. Odlyzko (1999). Emerging Applications of Number Theory. Springer. ISBN 0387988246.
- Raymond Hill (1988). A First Course In Coding Theory. Oxford University Press. ISBN 0-19-853803-0.
- Marc Hindry; Silverman, Joseph H. (2000). Diophantine geometry. Springer-Verlag. ISBN 0-387-98981-1.
- John G. Hocking (1988), Topology, Dover Publications, ISBN 0-486-65676-4
- Christopher Hooley (1976). Applications of sieve methods to the theory of numbers. Cambridge University Press. ISBN 0-521-20915-3.
- John M. Howie (1995). Fundamentals of Semigroup Theory. Oxford University Press. ISBN 0-19-851194-9.
- James E. Humphreys (1972). Introduction to Lie algebras and representation theory. Springer-Verlag. ISBN 0-387-90052-7.
- K. Ireland; M. Rosen (1993). A Classical Introduction to Modern Number Theory. New York, New York: Springer-Verlag. ISBN 0-387-97329-X.
- Kenkichi Iwasawa (1986). Local Class Field Theory. Oxford University Press. ISBN 0195040309.
- Gerald Janusz (1973). Algebraic Number Fields. Academic Press. ISBN 0-12-380520-4.
- D. L. Johnson (1990). Presentations of groups. Cambridge University Press. ISBN 0-521-37203-8.
- L. Kuipers; H. Niederreiter (2006). Uniform Distribution of Sequences. Dover Publishing. ISBN 0-486-45019-8.
- E. Landau (1927). Elementare Zahlentheorie. Leipzig, Germany: Hirzel.
- Serge Lang (1993). Algebra, 3rd ed.. Addison-Wesley. ISBN 0-201-55540-9.
- Serge Lang (1997). Survey of Diophantine geometry. Springer-Verlag. ISBN 3-540-61223-8.
- Serge Lang (1978). Elliptic curves: Diophantine analysis. Springer-Verlag. ISBN 3-540-08489-4.
- Serge Lang (1986). Algebraic number theory. Springer-Verlag. ISBN 0-387-94225-4.
- J. Dennis Lawrence (1972). A catalog of special plane curves. Dover Publications. ISBN 0-486-60288-5.
- William Judson LeVeque (1996). Fundamentals of Number Theory. Dover Publishing. ISBN 0486689069.
- P.J. McCarthy (1991). Algebraic extensions of fields. Dover Publications. ISBN 0-486-66651-4.
- I.G. Macdonald (1979). Symmetric Functions and Hall Polynomials. Oxford University Press. ISBN 0-19-853530-9.
- F.J. MacWilliams; N.J.A. Sloane (1977). The Theory of Error-Correcting Codes. North-Holland. ISBN 0-444-85193-3.
- Kurt Mahler (1981). p-adic Numbers and their Functions. Cambridge University Press. ISBN 0-521-23102-7.
- Hugh L. Montgomery; Robert C. Vaughan (2007). Multiplicative number theory I. Classical theory. Cambridge University Press. ISBN 0-521-84903-9.
- Thomas Muir (1960). A treatise on the theory of determinants. Dover Publications.
- Shigeru Mukai; William Oxbury (translator) (2003). An Introduction to Invariants and Moduli. ISBN 0-521-80906-1.
- W. Narkiewicz (1990). Elementary and analytic theory of algebraic numbers, 2nd ed. Springer-Verlag/Polish Scientific Publishers PWN. ISBN 3-540-51250-0.
- Melvyn B. Nathanson (1996). Additive Number Theory: the Classical Bases. Springer-Verlag. ISBN 0-387-94656-X.
- Melvyn B. Nathanson (1996). Additive Number Theory: Inverse Problems and the Geometry of Sumsets. Springer-Verlag. ISBN 0-387-94655-1.
- Jürgen Neukirch (1986). Class field theory. ISBN 3-540-12521-2.
- Donald J. Newman (1998). Analytic number theory. Springer-Verlag. ISBN 0-387-98308-2.
- Ivan Niven; Herbert S. Zuckerman, Hugh Montgomery (1991). An introduction to the theory of numbers. John Wiley. ISBN 0-471-54600-3.
- J.R. Partington (1988). An introduction to Hankel operators. Cambridge University Press. ISBN 0-521-36791-3.
- Michael D. Potter (1990). Sets: An Introduction. Oxford University Press. ISBN 0-19-853399-3.
- Hilary A. Priestley (2003). Introduction to Complex Analysis, 2nd ed. Oxford University Press. ISBN 0-19-852562-1.
- M. Ram Murty (2001). Problems in Analytic Number Theory. Springer-Verlag. ISBN 0387951431.
- Paulo Ribenboim (1996). The new book of prime number records. Springer-Verlag. ISBN 0-387-94457-5.
- Paulo Ribenboim (2000). My Numbers, My Friends: Popular Lectures on Number Theory. Springer-Verlag. ISBN 0-387-98911-0.
- Hans Riesel (1994). Prime Numbers and Computer Methods for Factorization, 2nd ed. Birkhäuser. ISBN 0-8176-3743-5.
- Steven Roman (2005). The umbral calculus. Dover Publications. ISBN 0-486-44139-3.
- Gian-Carlo Rota (1978). Studies in Combinatorics. Mathematical Association of America. ISBN 0-88385-117-2.
- G.-C. Rota; P. Doubilet, C. Greene, D. Kahaner, A. Odlyzko and R. Stanley (1975). Finite operator calculus. Academic Press. ISBN 0125966504.
- Min Ru (2001). Nevanlinna Theory and Its Relation to Diophantine Approximation. World Scientific Publishing. ISBN 9810244029.
- Pierre Samuel (1972). Algebraic number theory. Hermann/Kershaw.
- Richard D. Schafer (1995). An introduction to Non-associative algebras. Dover Publications. ISBN 0-486-68813-5.
- David Sharpe (1987). Rings and factorization. Cambridge University Press. ISBN 0-521-33718-6.
- Alexei Skorobogatov (2001). Torsors and rational points. ISBN 0-521-80237-7.
- N.P. Smart (1998). The algorithmic resolution of Diophantine equations. Cambridge University Press. ISBN 0-521-64156-X.
- I.N. Sneddon (1961). Fourier series. Routledge and Kegan Paul.
- Ian Stewart; David Tall (1977). The Foundations of Mathematics. Oxford University Press. ISBN 0-19-853165-6.
- I.N. Stewart; D.O. Tall (1979). Algebraic number theory. Chapman and Hall. ISBN 0-412-13840-9.
- Gérald Tenenbaum (1995). Introduction to Analytic and Probabilistic Number Theory. Cambridge University Press. ISBN 0-521-41261-7.
- J.H. van Lint (1992). Introduction to Coding Theory, 2nd ed. Springer-Verlag. ISBN 3-540-54894-7.
- Fesenko, Ivan and Vostokov, Sergei, Local Fields and Their Extension, 2nd ed., American Mathematical Society, 2002, ISBN 0-8218-3259-X
- Serre, Jean-Pierre, "Local Class Field Theory" in Algebraic Number Theory, Proceedings (edd Cassels, J.W.S. and Fröhlich, A), Academic Press, 1967, ISBN 012268950X.
- J. Tate, "Fourier analysis in number fields and Hecke's zeta functions" (Tate's 1950 thesis), reprinted in Algebraic Number Theory by J. W. S. Cassels, A. Frohlich ISBN 0-12-163251-2