Talk:Cipher: Difference between revisions
imported>Sandy Harris |
imported>Sandy Harris |
||
Line 44: | Line 44: | ||
[[User:Sandy Harris|Sandy Harris]] 03:28, 15 September 2008 (CDT) | [[User:Sandy Harris|Sandy Harris]] 03:28, 15 September 2008 (CDT) | ||
== Asymmetric stream ciphers? == | |||
Reverting one of my edits [http://en.citizendium.org/wiki?title=Cipher&diff=100386207&oldid=100386206], Howard comments "(Please discuss deletion on the talk page. Is anything you deleted inaccurate?)". OK. | |||
Yes, it is inaccurate; that's why I deleted it. I know of no asymmetric stream ciphers; it is not clear to me that they are even possible. There is no point to having different keys for encryption and decryption (the definition of asymmetric) if both generate the same pseudo-random stream. If they generate different streams (really different, not just something trivially related like a b c and -a -b -c), how would the cipher work? [[User:Sandy Harris|Sandy Harris]] 03:57, 15 September 2008 (CDT) |
Revision as of 02:57, 15 September 2008
Constable help needed for unwarranted deletion of reference
Since I wrote some of the article, I may not be able to speak as a neutral editor, but I can see absolutely no justification for removing a citation, from one of the most authoritative textbooks in computer science, from the commentary about the need to generate random numbers by non-numeric means.
I cited, under Talk:One-time_pad some research that might suggest that it may be possible to generate pseudorandom sequences that are unpredictable, but I would want to spend a few hours on those proofs. There is no reason whatsoever for deleting the Knuth citation. Howard C. Berkowitz 21:08, 2 August 2008 (CDT)
Again, an unwarranted deletion of a citation
Since I wrote the Venona article, I believe I know what is in it. If, therefore, I believed that it was useful to wikilink to it, rather than having the direct citation in the references for this article, I would have done so. I did not. Sandy Berger has not explained the second deletion of a relevant citation. Howard C. Berkowitz 21:20, 2 August 2008 (CDT)
Constable Comment
I'm responding to a request above asking for constable intervention. What I see is an article that is under the Mathematics and Military workgroups. Howard would be considered an editor n this page and Sandy considered an author. First I'd like to say that, from an outsider perspective that knows nothing about content, the initial work that built this article was an excellent example of collaboration, so I thank you for that. In an effort to avoid prolonged and unproductive disagreements concerning content and style, Citizendium empowers editors with rights to use their expertise to decide the best use of content and style. Therefore, Howard has that control at this point and can place and replace anything that he feels appropriate. We trust that Howard will consider the concerns of all authors when making his decisions. I might also suggest that everyone use the talk page when deleting material as, under the certain circumstances, this is a blockable offense and a constable would be left with no alternative. D. Matt Innis 08:13, 3 August 2008 (CDT)
- To get additional editor input, I am also adding the Computers workgroup. Most modern ciphers are computer-based, and the principles of encryption, within the broader context of information security, is an extremely relevant subject. Howard C. Berkowitz 09:43, 3 August 2008 (CDT)
Bulk encryption vs. Link Encryption
Howard just reverted [1] one of my edits. I think the edit was correct. RFC 4949 [2], which Howard helpfully cites, defines the terms as follows:
$ bulk encryption
1. (I) Encryption of multiple channels by aggregating them into a single transfer path and then encrypting that path. (See: channel.)
2. (O) "Simultaneous encryption of all channels of a multichannel telecommunications link." [C4009] (Compare: bulk keying material.)
Usage: The use of "simultaneous" in definition 2 could be interpreted to mean that multiple channels are encrypted separately but at the same time. However, the common meaning of the term is that multiple data flows are combined into a single stream and then that stream is encrypted as a whole.
$ link encryption
(I) Stepwise (link-by-link) protection of data that flows between two points in a network, provided by encrypting data separately on each network link, i.e., by encrypting data when it leaves a host or subnetwork relay and decrypting when it arrives at the next host or relay. Each link may use a different key or even a different algorithm. [R1455] (Compare: end-to-end encryption.)
Sandy Harris 03:28, 15 September 2008 (CDT)
Asymmetric stream ciphers?
Reverting one of my edits [3], Howard comments "(Please discuss deletion on the talk page. Is anything you deleted inaccurate?)". OK.
Yes, it is inaccurate; that's why I deleted it. I know of no asymmetric stream ciphers; it is not clear to me that they are even possible. There is no point to having different keys for encryption and decryption (the definition of asymmetric) if both generate the same pseudo-random stream. If they generate different streams (really different, not just something trivially related like a b c and -a -b -c), how would the cipher work? Sandy Harris 03:57, 15 September 2008 (CDT)